Skip to main content
Log in

Soliton-like dispersion-free optical transmission based on optical time-domain fractional Fourier transform

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In the present article, implementation of the optical time-domain fractional Fourier transform (FRFT) is achieved and a new method for soliton-like dispersion-free optical transmission is proposed. With this method, the pulses’ envelope will keep unchanged and non-broadened after transmission under the combined effects of chromatic dispersion and self-phase modulation in the fiber link without any dispersion compensation. Numerical analysis shows how a pulse evolves for different orders of FRFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pei S.-C., Ding J.-J.: Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing. IEEE Trans. Signal Process. 55(10), 4839–4850 (2007)

    Article  Google Scholar 

  2. Du, W.-C., Gao, X.-Q., Wang, G.-H.: Using FRFT to estimate target radial acceleration. In: Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, pp. 2–4 (2007)

  3. Zhang Y., Dong B.-Z., Gu B.-Y., Yang G.-Z.: Beam shaping in the fractional Fourier transform domain. J. Opt. Soc. Am. A. 15(5), 1114–1120 (1998)

    Article  Google Scholar 

  4. Sun H.-B., Liu G.-S., Gu H., Su W.-H.: Application of the fractional Fourier transform to moving target detection in airborne SAR. IEEE Trans. Aerosp. Elect. Sys. 38(4), 1416–1424 (2002)

    Article  Google Scholar 

  5. Almeida L.B.: The fractional Fourier transform an time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  6. Ozaktas H.M., Mendlovic D.: Fractional Fourier optics. J.Opt. Soc. Am. A. 12(4), 743–750 (1995)

    Article  MathSciNet  Google Scholar 

  7. Pei S.-C., Ding J.-J.: Simplified fractional Fourier transform. J. Opt. Soc. Am. A. 17(12), 2355–2367 (2000)

    Article  MathSciNet  Google Scholar 

  8. Romagnoli M., Franco P., Corsini R., Schiffini A.: Time-domain Fourier optics for polarization-mode dispersion compensation. Opt. Lett. 24(17), 1197–1199 (1999)

    Article  Google Scholar 

  9. Hirooka T., Nakazawa M., Futami F.: Large-dispersion-tolerance optical signal transmission system based on temporal imaging. Opt. Lett. 27(8), 583–585 (2002)

    Article  Google Scholar 

  10. Paré C., Bélanger P.-A.: Antisymmetric soliton in a dispersion-managed system. Opt. Commun. 168, 103 (1999)

    Article  Google Scholar 

  11. Green A.G., Mitra P.P., Wegener L.G.L.: Effect of chromatic dispersion on nonlinear phase noise. Opt. Lett. 28(24), 2455–2457 (2003)

    Article  Google Scholar 

  12. Li W., Qiao Y.J., Han Q.S., Zhang H.: A PMD-supported 100Gb/s optical frequency-domain IM-DD transmission system. Chin. Opt. Lett. 8, 7 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Q., Li, W. & Huang, B. Soliton-like dispersion-free optical transmission based on optical time-domain fractional Fourier transform. Photon Netw Commun 20, 10–16 (2010). https://doi.org/10.1007/s11107-010-0240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-010-0240-8

Keywords

Navigation