Skip to main content
Log in

PRNN/ERLS-based predictive QoS-promoted DBA scheme for upstream transmission in EPON

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This article proposes a PRNN/ERLS-based predictive QoS-promoted dynamic bandwidth allocation (PQ-DBA) scheme for upstream transmission in Ethernet passive optical network (EPON) systems. The proposed PQ-DBA scheme originally divides incoming packets of voice, video, data service traffic into six priorities, where packets having less room before QoS requirements violation or being in starvation situation will be dynamically promoted to high priority cycle-by-cycle. It predicts packets arriving at prediction interval for ONUs using pipeline recurrent neural network (PRNN)/extended recursive least squares (ERLS) so that the bandwidth allocation can be more up-to-date and then accurate. Simulation results show that the proposed PQ-DBA scheme achieves higher system utilization and lower average voice, video, data packet delay time than the DBAM scheme [Luo and Ansari, OSA J Opt Netw 4(9):561–572] by 4, and 21, 90, 43%, respectively, and the PQ-DBA scheme but without prediction by 2, and 26, 29, 34%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MaGarry M.P., Maier M., Reisslein M.: Ethernet PONs: a survey of dynamic bandwidth allocation (DBA) algorithms. IEEE Opt. Commun. 42(8), S8–15 (2004). doi:10.1109/MCOM.2004.1321381

    Article  Google Scholar 

  2. Kramer G., Mukherjee B., Pesavento G.: IPACT: a dynamic protocol for an Ethernet PON (EPON). IEEE Commun. Mag. 40(2), 74–80 (2002)

    Article  Google Scholar 

  3. IEEE Standard 802.3ah-2004, IEEE P802.3ah Ethernet in the First Mile Task Force.

  4. Cheng H., Chen M., Xie S.: A dynamic bandwidth allocation scheme supporting different priority services in EPON. Proc. Int. Soc. Opt. Eng. (SPIE) 5626(2), 1123–1127 (2005). doi:10.1117/12.575286 ISBN 0-8194-5580-6

    Google Scholar 

  5. Assi C.M., Ye Y., Dixit S., Ali M.A.: Dynamic bandwidth allocation for quality-of-service over Ethernet PONs. IEEE J. Sel. Areas Commun. 21(9), 1467–1477 (2003)

    Article  Google Scholar 

  6. Xie J., Jiang S., Jiang Y.: A dynamic bandwidth allocation scheme for differentiated services in EPONs. IEEE Commun. Mag. 42(8), 32–39 (2004). doi:10.1109/MCOM.2004.1321385

    Article  Google Scholar 

  7. Yang Y., Nho J., Mahalik N.P., Kim K., Ahn B.: QoS provisioning in the EPON systems with traffic-class burst-polling based delta DBA. IEICE Trans. Commun. 89, 419–426 (2006)

    Article  Google Scholar 

  8. Wu, S., Ding, Q., Chung, K.C.: Improving the network performance using prediction based longest queue first (PLQF) scheduling algorithm. In: ATM (ICATM 2001) and 4th IEEE International Conference on High Speed Intelligent Internet Symposium, Seoul, South Korea, pp. 344–348, ISBN: 0-7803-7093-7. (2001)

  9. Luo Y., Ansari N.: Bandwidth allocation for multiservice access on EPONs. IEEE Commun. Mag. 43(2), 16–21 (2005). doi:10.1109/MCOM.2005.1391498

    Article  Google Scholar 

  10. Luo Y., Ansari N.: Limited sharing with traffic prediction for dynamic bandwidth allocation and QoS provisioning over Ethernet passive optical networks. OSA J. Opt. Netw. 4(9), 561–572 (2005)

    Article  Google Scholar 

  11. Hwang, I.S., Shyu, Z.D., Ke, L.Y., Chang, C.C.: A novel early DBA mechanism with prediction-based fair excessive bandwidth reallocation scheme in EPON. In: IEEE Proceedings of the Sixth International Conference on Networking, Sainte-Luce, Martinique, France, pp. 75–80, ISBN:0-7695-2805-8 (2008)

  12. Yin, S., Luo, Y., Ansari, N., Wang, T.: Non-linear predictor-based dynamic bandwidth allocation over TDM-PONs: stability analysis and controller design. IEEE International Conference on Communications, Beijing, pp. 5186–5190, ISBN: 978-1-4244-2075-9 (2008)

  13. Haykin S., Li L.: Nonlinear adaptive prediction of nonstationary signals. IEEE Trans. Signal Process. 43(2), 526–535 (1995)

    Article  Google Scholar 

  14. Baltersee L., Chambers J.A.: Nonlinear adaptive prediction of speech using a pipelined recurrent neural network. IEEE Trans. Signal Process. 46(8), 2207–2216 (1998)

    Article  Google Scholar 

  15. Chang C.J., Chen B.W., Liu T.Y., Ren F.C.: Fuzzy/neural congestion control for integrated voice and data DS-CDMA/FRMA cellular networks. IEEE J. Sel. Areas Commun. 18(2), 183–293 (2000)

    Google Scholar 

  16. Floyd S., Jacobson V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1(4), 397–413 (1993) ISSN:1063-6692

    Article  Google Scholar 

  17. Connor J.T., Martin R.D., Atlas L.E.: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 5(2), 240–254 (1994)

    Article  Google Scholar 

  18. Willinger W., Taqqu M.S., Sherman R., Wilson D.V.: Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans. Netw. 5(1), 71–86 (1997) ISSN: 1063-6692

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Wen Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, JW., Chang, CJ. & Tien, PL. PRNN/ERLS-based predictive QoS-promoted DBA scheme for upstream transmission in EPON. Photon Netw Commun 20, 17–26 (2010). https://doi.org/10.1007/s11107-010-0241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-010-0241-7

Keywords

Navigation