Skip to main content
Log in

Higher-order dispersion mitigation for spectrum-sliced FFH-OCDMA using adaptive prime-hop codes

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The fast frequency hopping optical CDMA with prime-hop codes (PHCs) provides great flexibility and increases spectral efficiency in comparison with direct sequence methods. Applying the spectrum-sliced incoherent source will further reduce the system cost. However, the dispersion in such an incoherent system becomes a limiting factor to the bit error rate. A novel adaptive PHC scheme to such systems is proposed in this article. The main impact of the scheme is to reduce the power loss and the bit error rate (BER) degradation due to higher-order dispersion. The impact of inherit beat noise in spectrum slicing systems is also alleviated. Performance comparisons between the adaptive PHC and original PHC schemes indicate that the former is more suitable for use in the considered incoherent system, accommodating up to 17% more users for a given BER. The proposed adaptive method can be universally applied to mitigate dispersion effects in the similar 2D OCDMA systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salehi J.A.: Code division multiple-access techniques in optical fibre networks I fundamental principles. IEEE Trans. Commun. 37, 824–833 (1989)

    Article  Google Scholar 

  2. Azizoglu M., Salehi J.A., Li Y.: Optical CDMA via temporal codes. IEEE Trans. Commun. 40, 1162–1170 (1992)

    Article  MATH  Google Scholar 

  3. Zaccarin D., Kavehrad M.: An optical CDMA system based on spectral encoding of LED. IEEE Photon. Technol. Lett. 5, 479–482 (1993)

    Article  Google Scholar 

  4. Fathallah H., Rusch L.A., LaRochelle S.: Passive optical fast frequency-hop CDMA communications system. J. Lightwave Technol. 17, 397–405 (1999)

    Article  Google Scholar 

  5. Tancevski L., Andonovic I.: Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security. J. Lightwave Technol. 14, 2636–2647 (1996)

    Article  Google Scholar 

  6. Prucnal P., Santoro M., Fan T.: Spread spectrum fiber-optic local area network using optical processing. J. Lightwave. Technol. 4, 547–554 (1986)

    Article  Google Scholar 

  7. Yang G.C., Kwong W.C.: Performance analysis of optical CDMA with prime codes. Electron. Lett. 31, 569–570 (1995)

    Article  Google Scholar 

  8. Tancevski L., Andonovic I.: Wavelength hopping/time spreading code division multiple accesssystems. Electron. Lett. 30, 1388–1390 (1994)

    Article  Google Scholar 

  9. Papannareddy R., Weiner A.M.: Performance comparison of coherent ultrashort light pulse and incoherent broad-band CDMA systems. IEEE Photon. Technol. Lett. 11, 1683–1685 (1999)

    Article  Google Scholar 

  10. Sardesai H.P., Chang C.C., Weiner A.M.: A femtosecond code-division multiple-access communication system test bed. J. Lightwave Technol. 16, 1953–1964 (1998)

    Article  Google Scholar 

  11. Smith E.D.J., Gough P.T., Taylor D.P.: Noise limits of optical spectral-encoding CDMA systems. Electron. Lett. 31, 1469–1470 (1995)

    Article  Google Scholar 

  12. Wen J.H., Lin J.Y., Liu C.Y.: Modified prime-hop codes for optical CDMA systems. IEE Proc. Commun. 150, 404–408 (2003)

    Article  Google Scholar 

  13. Lin J.-Y., Jhou J.-S., Liu C.-Y., Wen J.-H.: Performance analysis of modified prime-hop codes for OCDMA systems with multiuser detectors. Opt. Fiber Technol. 13, 108–116 (2007)

    Article  Google Scholar 

  14. Sun, S., Leeson, M.S.: Transmission performance of spectrum-sliced incoherent 2D FFH-OCDMA systems using modified prime-hop codes. In: International Conference on Communications and Mobile Computing, Kun Ming, China, 531–535 (2009)

  15. Sun S.B., Leeson M.S.: Spectrum-sliced wavelength division multiplexed systems with optical preamplifiers. Fiber Integr. Opt. 28, 417–429 (2009)

    Article  Google Scholar 

  16. Salehi J.A., Brackett C.A.: Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis. IEEE Trans. Commun. 37, 834–842 (1989)

    Article  Google Scholar 

  17. Boffi, P., Piccinin, D., Parolari, P., Aldeghi, R., Martinelli M.: Programmable fiber Bragg gratings for spectral CDMA. In: Lasers and Electro-Optics, 2000. (CLEO 2000). Conference on, 578–579 (2000)

  18. Kashyap R.: Fiber Bragg Gratings 2nd ed. Elsevier/Academic Press, Amsterdam (2010)

    Google Scholar 

  19. Gruer-Nielsen L., Knudsen S.N., Edvold B., Veng T., Magnussen D., Larsen C.C., Damsgaard H.: Dispersion compensating fibers. Opt. Fiber Technol. 6, 164–180 (2000)

    Article  Google Scholar 

  20. Dabarsyah B., Goh C., Khijwania S., Set S., Katoh K., Kikuchi K.: Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings. IEEE Photon. Technol. Lett. 15, 416–418 (2003)

    Article  Google Scholar 

  21. Agrawal G.P.: Fiber-Optic Communication Systems. Wiley- Interscience, New York (2002)

    Book  Google Scholar 

  22. Royset, A., Laming, R.: Demonstration of standard fiber transmission limited by third-order dispersion. Optical Fiber Communications, OFC’96, pp. 253–254 (1996)

  23. Matsumoto S., Takabayashi M., Yoshiara K., Sugihara T., Miyazaki T., Kubota F.: Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions. IEEE Photon. Technol. Lett. 16, 1095–1097 (2004)

    Article  Google Scholar 

  24. Reyes P., Litchinitser N., Sumetsky M., Westbrook P.: 160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater. IEEE Photon. Technol. Lett. 17, 831–833 (2005)

    Article  Google Scholar 

  25. Lee Y.J., Bae J., Lee K., Jeong J.M., Lee S.B.: Tunable dispersion and dispersion slope compensator using strain-chirped fiber Bragg grating. IEEE Photon. Technol. Lett. 19, 762–764 (2007)

    Article  Google Scholar 

  26. Forghieri F., Tkach R.W., Chraplyvy A.R., Marcuse D.: Reduction of four-wave mixing crosstalk in WDM systems using unequally spaced channels. IEEE Photon. Technol. Lett. 6, 754–756 (1994)

    Article  Google Scholar 

  27. Lee J.S., Chung Y.C., DiGiovanni D.J.: Spectrum-sliced amplifier light source for multichannel WDM applications. IEEE Photon. Technol. Lett. 5, 1458–1461 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Leeson, M.S. Higher-order dispersion mitigation for spectrum-sliced FFH-OCDMA using adaptive prime-hop codes. Photon Netw Commun 21, 107–116 (2011). https://doi.org/10.1007/s11107-010-0285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-010-0285-8

Keywords

Navigation