Skip to main content

Advertisement

Log in

Compensating unflattened WDM chips spectra using dynamic backward-pumped fiber Raman amplifiers technology

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Fiber Raman amplifiers (FRAs) with multiple pumps are proposed to realize dynamic gain equalization for a spectral chips signal with a non-flattened broadband light source (BLS) in a spectrum-sliced wavelength-division multiplexing (WDM) network. In FRAs with multiple pumps, the gain profile can be adjusted via appropriate specification of the relative position of the pump wavelengths and the power of the pump waves. This paper combines a pump-power control algorithm and a genetic algorithm (GA) to establish the optimal pump spectrum for any specified gain spectrum in the WDM system. The method flattens the power spectra of WDM chips by identifying the optimal pump wavelengths and pump power of backward-pumped FRAs. It avoids the conventional requirement for time-consuming trial-and-error adjustments or intensive numerical simulations. Simulation results show that the scheme is simple, effective, and applicable for various BLSs in a spectrum-sliced WDM transmitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stern T.E., Bala K.: Multiwavelength Optical Networks: A Layered Approach, Reading. Addison-Wesley, Boston, MA (1999)

    Google Scholar 

  2. Keiser G.E.: A review of WDM technology. Opt. Fiber Technol. 5, 3–39 (1999)

    Article  Google Scholar 

  3. Perlin V.E., Winful H.G.: Optimal design of flat-gain wide-band fiber Raman amplifiers. IEEE J. Lightwave Technol. 20(2), 250–254 (2002)

    Article  Google Scholar 

  4. Namiki S., Emori Y.: Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes. IEEE J. Sel. Topics Quantum Electron. 7(1), 3–16 (2001)

    Article  Google Scholar 

  5. Kidorf H., Rottwitt K., Nissov M., Ma M., Rabarijaona E.: Pump interactions in a 100-nm bandwidth Raman amplifier. IEEE Photon. Technol. Lett. 11(5), 530–532 (1999)

    Article  Google Scholar 

  6. Xiao P., Zeng Q., Huang J., Liu J.: A new optimal algorithm for multipump sources of distributed fiber Raman amplifier. IEEE Photon. Technol. Lett. 15(2), 206–208 (2003)

    Article  Google Scholar 

  7. Cui S., Liu J., Ma X.: A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier. IEEE Photon. Technol. Lett. 16(11), 2451–2453 (2004)

    Article  Google Scholar 

  8. Park J., Park J., Kim P., Park N.: Gain and noise figure spectrum control algorithm for fiber Raman amplifiers. IEEE Photon. Technol. Lett. 18(10), 1125–1127 (2006)

    Article  Google Scholar 

  9. Perlin V.E., Winful H.G.: Optimal design of flat-gain wide-band fiber Raman amplifiers. IEEE J. Lightwave Technol. 20(2), 250–254 (2002)

    Article  Google Scholar 

  10. Zhang W., Feng X., Peng J., Liu X.: A simple algorithm for gain spectrum adjustment of backward-pumped distributed fiber Raman amplifiers. IEEE Photon. Technol. Lett. 16(1), 69–71 (2004)

    Article  Google Scholar 

  11. Babich, C.D., Young, J.F.: Performance modeling of a planar waveguide based spectral encoding system. IEEE Lasers and Electro-Optics Society Annual Meeting Proceedings, pp. 523–524.(1999)

  12. Hansen P.B., Eskildsen L., Stentz AJ., Strasser T.A., Judkins J., DeMarco J.J., Pedrazzani R., DiGiovanni D.J.: Rayleigh scattering limitations in distributed Raman pre-amplifiers. IEEE Photon. Technol. Lett. 10(1), 159–161 (1998)

    Article  Google Scholar 

  13. Michalewicz Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, New York (1992)

    MATH  Google Scholar 

  14. Liu X., Zhang H., Guo Y.: A novel method for Raman amplifier propagation equations. IEEE Photon. Technol. Lett. 15(3), 392–394 (2003)

    Article  MathSciNet  Google Scholar 

  15. Varshney, S.K., Saitoh, K., Koshiba, M.: Raman amplification properties of ultralow loss photonic crystal fibers. IQEC/CLEO, pp. 588–589 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Ta Yen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, CT., Tsai, CW. Compensating unflattened WDM chips spectra using dynamic backward-pumped fiber Raman amplifiers technology. Photon Netw Commun 21, 192–200 (2011). https://doi.org/10.1007/s11107-010-0292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-010-0292-9

Keywords

Navigation