Skip to main content
Log in

A scalable optical WDM multicast Beneš network with multi-channel wavelength converters

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

An optical wavelength division multiplexing (WDM) multicast network interconnects an input signal on a given wavelength to one or more output fibers, possibly on different wavelengths (via wavelength conversion), while maintaining the signal in the optical domain. A key challenge in the design of scalable multicast networks is to reduce conversion complexity without affecting the switching capability and signal quality. In this article, we propose a scalable WDM multicast Beneš interconnection network with minimized conversion complexity. The proposed network is based on the Copy-and-Route architecture, and it uses multi- channel WCs (MCWCs) for wavelength conversion. The conversion complexity of the proposed design is O(F log2 W) (where F is the number of fibers and W is the number of wavelengths per fiber), which is smaller than the O(FW) complexity of the optimal design based on conventional single-channel WCs (SCWCs). We prove that, for W >  64 and for any value of F, the conversion complexity of the new design is strictly less than that of the optimal SCWC-based design regardless of the total number of wavelengths simultaneously converted by each MCWCs. Analyzes of conversion complexity of the proposed design for large values of W confirm considerable savings compared to the optimal SCWC-based design. For instance, for W = 256 and an for an arbitrary value of F, a practical implementation of the proposed design achieves 87% reduction in conversion complexity as compared to the optimal SCWC-based design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iannone E., Listanti M., Sabella R.: Multicasting in optical transport networks. J. Opt. Commun. 19(3), 90–98 (1998)

    Google Scholar 

  2. Qiao, C., Jeong, M., Guha, A., Zhang, X., Wei, J.: WDM multicasting in IP over WDM networks. In: Proceedings of the International Conference on Network Protocols (ICNP), pp. 89–96, November 1999

  3. Yang Y., Wang J., Qiao C.: Nonblocking WDM multicast switching networks. IEEE Trans. Parallel Distrib. Syst. 11(12), 1274–1287 (2000)

    Article  Google Scholar 

  4. Sahasrabuddhe L.H., Mukherjee B.: Light-tress: optical multicasting for improved performance in wavelength-routed networks. IEEE Commun. 37(2), 67–73 (1999)

    Article  Google Scholar 

  5. Pankaj R.K.: Wavelength requirements for multicasting in all-optical networks. IEEE Trans. Commun. 50(1), 126–134 (2002)

    Article  Google Scholar 

  6. Wang Y., Yang Y.: Multicasting in a class of multicast-capable WDM networks. IEEE/OSA J. Lightwave Technol. 20(3), 350–359 (2002)

    Article  Google Scholar 

  7. Zhou C., Yang Y.: Wide-sense nonblocking multicast in a class of regular optical WDM networks. IEEE/ACM Trans. Netw. 7(3), 414–424 (1999)

    Article  Google Scholar 

  8. Malli, R., Zhang, X., Qiao, C.: Benefit of multicasting in all-optical WDM networks. In: Proceedings of the Conference on All-Optical Networks, pp. 209–220, November 1998

  9. Danilewicz G., Kabacińskil W.: Wide-sense and strict-sense nonblocking operation of multicast multilog 2 N switching networks. IEEE Trans. Commun. 50, 1025–1036 (2002)

    Article  Google Scholar 

  10. Subramaniam S., Azizoglu M., Somani A.K.: All-optical networks with sparse wavelength conversion. IEEE/ACM Trans. Netw. 4(4), 544–557 (1996)

    Article  Google Scholar 

  11. Eramo V., Listanti M., Valletta A.: Scheduling algorithms in optical packet switches with input wavelength convesion. J. Comput. Commun. 28, 1456–1467 (2005)

    Article  Google Scholar 

  12. Pan, D., Anand, V., Ngo, H.Q.: Cost-effective constructions for nonblocking WDM multicast switching networks. In: Proceedings of IEEE ICC’04, pp. 1801–1805 (2004)

  13. Yang Y., Wang J.: Designing WDM optical interconnects with full connectivity by using limited wavelength conversion. IEEE Trans. Comput. 53(12), 1547–1556 (2004)

    Article  Google Scholar 

  14. Yang Y., Wang J.: Cost-effective designs of WDM optical interconnects. IEEE Trans. Parallel Distrib. Syst. 16(1), 51–66 (2005)

    Article  Google Scholar 

  15. Dasylva A.C., Montuno D.Y., Kodaypak P.: Optimization of optical cross-connects with wave-mixing conversion. IEEE/ACM Trans. Netw. 13(2), 448–458 (2005)

    Article  Google Scholar 

  16. Chou M.H., Parameswaran K.R., Fejer M.M., Brener I.: Multiple-channel wavelength conversion by use of engineered quasi-phase matching structures in LiNbO 3 waveguides. Opt. Lett. 24, 1157–1159 (1999)

    Article  Google Scholar 

  17. Antoniades N., Yoo S.J.B., Bala K., Ellinas G., Stern T.E.: An architecture for a wavelength—interchanging cross-connect utilizing parametric wavelength converters. J Lightwave Technol. 17(7), 1113–1125 (1999)

    Article  Google Scholar 

  18. Lee T.T.: Nonblocking copy networks for multicast packet switching. IEEE J Sel. Areas Commun. 6(9), 1455–1467 (1988)

    Article  Google Scholar 

  19. Mir N.F.: An efficient multicast approach in an ATM switching network for multimedia applications. J. Netw. Comput. Appl. 21(1), 31–39 (1998)

    Article  Google Scholar 

  20. Turner J.: Design of broadcast packet switching networks. IEEE Trans. Commun. 36(6), 734–743 (1988)

    Article  Google Scholar 

  21. Deng Y., Lee T.T.: Crosstalk-free conjugate networks for optical multicast switching. IEEE/OSA J. Lightwave Technol. 24(10), 3635–3645 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitham S. Hamza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamza, H.S. A scalable optical WDM multicast Beneš network with multi-channel wavelength converters. Photon Netw Commun 21, 201–213 (2011). https://doi.org/10.1007/s11107-010-0293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-010-0293-8

Keywords

Navigation