Skip to main content
Log in

On the design of asynchronous optical packet switch architectures with shared delay lines and converters

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Optical packet switching (OPS) is a promising technology to enable next-generation high-speed IP networks. A major issue in OPS is packet contention that occurs when two or more packets attempt to access the same output fiber. In such a case, packets may be dropped, leading to degraded overall switching performance. Several contention resolution techniques have been investigated in the literature including the use of fiber delay lines (FDLs), wavelength converters (WCs), and deflection routing. These solution typically induce extra complexity to the switch design. Accordingly, a key design objective for OPS is to reduce packet loss without increasing switching complexity and delay. In this paper, we investigate the performance of contention resolution in asynchronous OPS architectures with shared FDLs and WCs in terms of packet loss and average switching delay. In particular, an enhanced FDL-based and a novel Hybrid architecture with shared FLDs and WCs are proposed, and their packet scheduling algorithms are presented and evaluated. Extensive simulation studies show that the performance of proposed FDL-based architecture outperforms typical OPS architectures reported in the literature. In addition, it shown that, for the same packet loss ratio, the proposed hybrid architecture can achieve up to 30% reduction in the total number of ports and around 80% reduction in the overall length of fiber as compared to the FDL-based architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukherjee B.: WDM Optical Networks. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Caenegem R.V., Martinez J.M., Colle D., Pickavet M., Demeester P., Ramos F., Mart J.: From IP over WDM to all-optical packet switching: economical view. J. Lightw. Technol. 24(4), 1638–1645 (2006)

    Article  Google Scholar 

  3. Chang, C.-H., Perati, M.R., Wu, J., Shao, S.-K.: Performance study of various packet scheduling algorithms for variable-packet-length feedback type WDM optical packet switches. IEEE, High Performance Switching and Routing, Workshop (2006)

  4. Ben Yoo S.J.: Optical packet and burst switching technologies for the future photonic internet. J. Lightw. Technol. 24, 4468–4492 (2006)

    Article  Google Scholar 

  5. Jeong J.Y., Jeong J.-M.: Asynchronous variable-length optical packet switch with delay-line loop buffers. IEICE Trans. Commun. E 91(B(2), 589–592 (2010)

    Google Scholar 

  6. Klinkowski, M., Careglio, D., Solé-Pareta, J.: Wavelength vs Burst vs Packet Switching: comparison of optical network models, Advanced Broadband Communication Center CCABA Jordi Girona, Barcelona (2002)

  7. Bayvel, P.: Wavelength routing and optical burst switching in the design of future optical network architectures, Opt. Commun. 4, 616–619 (2001)

    Google Scholar 

  8. Merchant K.K., McGeehan J.E., Willner A.E., Ovadia S., Kamath P., Touch J.D., Bannister J.A.: Analysis of an optical burst switching router with tunable multiwavelength recirculating buffers. J. Lightw. Technol. 23(10), 3302–3312 (2005)

    Article  Google Scholar 

  9. Callegati F.: Optical buffers for variable length packets. IEEE Commun. Lett. 4(9), 292–294 (2000)

    Article  Google Scholar 

  10. Wosinska, L., Chen, J.: Contention Resolution in an Asynchronous All-Optical Packet Switch, IEEE International Conference Photonics in Switching 1–3, Oct 2000

  11. Raffaelli C., Aleksic S., Callegati F., Cerroni W., Maier G., Pattavina A., Savi M.: Optical packet switching. In: Aracil, J., Callegati, F. (eds) Book Chapter in Enabling Optical Internet with Advanced Network Technologies, Computer Communications and Networks, Springer, London (2009)

    Google Scholar 

  12. Harai H., Murata M.: High-speed buffer management for 40 Gb/s-based photonic packet switches. IEEE/ACM Trans. Netw. 14(1), 191–204 (2006)

    Article  Google Scholar 

  13. Zhao J., Sun X.: An optical router with multistage management functions for asynchronous optical packet switching network. Photon Netw. Commun. 21(1), 56–63 (2011)

    Article  Google Scholar 

  14. Fayoumi A.G., Jayasumana A.: All-optical cross-connect using feed-forward optical buffers with and without QoS: an analysis. Photon Netw. Commun. 16(3), 183–193 (2008)

    Article  Google Scholar 

  15. Eramo V., Listanti M., Di Donato M.: Performance evaluation of a bufferless optical packet switch with limited-range wavelength converters. IEEE Lett. Photonics Technol. 16(2), 644–646 (2004)

    Article  Google Scholar 

  16. Eramo V.: An analytical model for TOWC dimensioning in a multifiber optical-packet switch. Lightw. Technol. 24(12), 4799–4810 (2006)

    Article  Google Scholar 

  17. Danielsen S.L., Joergensen C., Mikkelsen B., Stubkjaer K.E.: Optical packet switched network layer without optical buffers. IEEE Lett. Photonics Technol. 10(6), 896–898 (1998)

    Article  Google Scholar 

  18. Szczesniak I., Czachórski T., Fourneau J.-M.: Packet loss analysis in optical packet-switched networks with limited deflection routing. Photon Netw. Commun. 16(3), 253–261 (2008)

    Article  Google Scholar 

  19. Choi J., Kang M.: Service differentiation using hybrid shared optical buffers in transparent optical networks. OSA Opt. Express 14(12), 5079–5091 (2006)

    Article  Google Scholar 

  20. Zhang T., Lu K., Jue J.P.: An analytical model for shared fiber-delay line buffers in asynchronous optical packet and burst switches. IEEE Inter. Commun. Conf. (ICC) 3, 1636–1640 (2005)

    Google Scholar 

  21. Zhang T., Lu K., Jue Jason P.: Shared fiber delay line buffers in asynchronous optical packet switches. IEEE J. Sel. Areas Commun. 24(4), 118–127 (2006)

    Article  Google Scholar 

  22. Zhang Z., Yang Y.: WDM optical interconnects with recirculation buffering and limited range wavelength conversion. IEEE Trans. Parallel Distrib. Syst. 17(5), 466–480 (2006)

    Article  Google Scholar 

  23. Hunter D.K., Nizam M.H.M., Chia M.C., Andonovic I., Guild K.M., Tzanakaki A., O’Mahony M.J., Bainbridge L.D., Stephens M.F.C., Penty R.V., White I.H.: WASPNET: a wavelength switched packet network. IEEE Commun. Mag. 37(3), 120–129 (1999)

    Article  Google Scholar 

  24. Chlamtac I., Fumagalli A., Suh C.-J.: Multibuffer delay line architectures for efficient contention resolution in optical switching nodes. IEEE Trans. Commun. 48(12), 2089–2098 (2000)

    Article  Google Scholar 

  25. Callegati F., Cerroni W.: Wavelength allocation algorithms in optical buffers. IEEE Inter. Conf. 2, 499–503 (2001)

    Google Scholar 

  26. Lal V., Masanovic M.L., Summers J.A., Fish G., Blumenthal D.J.: Monolithic wavelength converters for high-speed packet-switched optical networks. IEEE J. Sel. Top. Quantum Electron. 13(1), 49–57 (2007)

    Article  Google Scholar 

  27. Callegati F., Corazza G., Raffaelli C.: Exploitation of DWDM for optical packet switching with quality ofservice guarantees. IEEE J. Sel. Areas Commun. 20(1), 190–201 (2002)

    Article  Google Scholar 

  28. Lim H., Yu K.-S., Oh C., Park C.-S.: Numbers of tunable wavelength converters and internal wavelengths in the optical packet switch with shared FDL buffer. IEEE Inter. Conf. Trans. Opt. Netw. 3, 169–172 (2006)

    Google Scholar 

  29. Yang Y., Wang J.: Designing WDM optical interconnects with full connectivity by using limited wavelength conversion. IEEE Trans. Comput. 53(12), 1547–1556 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitham S. Hamza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamza, H.S., Ismail, T. & El-Sayed, K. On the design of asynchronous optical packet switch architectures with shared delay lines and converters. Photon Netw Commun 22, 191–208 (2011). https://doi.org/10.1007/s11107-011-0319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-011-0319-x

Keywords

Navigation