Skip to main content

Enabling transparent lambda services between metro and core networks

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Transparent end-to-end lambda services represent a highly desirable technology for both enabling bandwidth-greedy applications and reducing the telecommunication network capital and operational expenditures. However current network architectures, organized over different segments based on different technologies, are not tailored to efficiently provide end-to-end lambda services. This paper proposes a solution allowing optical bypass of the edge between the metro and the core segments. The proposed solution enables end-users belonging to different metro networks to directly communicate by establishing a lambda service traversing a common GMPLS-based core network. This paper details the lambda service setup mechanism, integrating access, metro and core segments, and the architecture of the metro-core edge node. Simulation results show that the proposed optical bypass of the metro-core edge is capable of providing high bandwidth end-to-end lambda services and reduces the utilization of expensive and power-hungry OEO interfaces without impacting network throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksic S.: Analysis of power consumption in future high-capacity network nodes. IEEE/OSA J. Opt. Commun. Netw 1(3), 245–258 (2009)

    Article  Google Scholar 

  2. An F.T., Kim K.S., Gutierrez D., Yam S., Hu E., Shrikhande K., Kazovsky L.: SUCCESS: a next-generation hybrid WDM/TDM optical access network architecture. IEEE J. Lightw. Technol. 22(11), 2557–2569 (2004)

    Article  Google Scholar 

  3. Ash, J., Le Roux, J.L.: Path computation element (PCE) communication protocol generic requirements. IETF RFC 4657 (2006)

  4. Baliga J., Ayre R., Hinton K., Sorin W., Tucker R.: Energy consumption in optical IP networks. IEEE J. Lightw. Technol 27(13), 2391–2403 (2009)

    Article  Google Scholar 

  5. Banerjee A., Park Y., Clarke F., Song H., Yang S., Kramer G., Kim K., Mukherjee B.: Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review. OSA J. Opt. Netw. 4(11), 737–758 (2005)

    Article  Google Scholar 

  6. Berger, L.: Generalized multi-protocol label switching (GMPLS) signaling resource reservation protocol-traffic engineering (RSVP-TE) extensions. IETF RFC 3473 (2003)

  7. Bianco, C., Cucchietti, F., Griffa, G.: Energy consumption trends in the next generation access network: a telco perspective. In: Proceedings of INTELEC 2007 (2007)

  8. Bonetto, E., Chiaraviglio, L., Cuda, D., Gavilanes Castillo, G., Neri, F.: Optical technologies can improve the energy efficiency of networks. In: Proceedings of ECOC ’09 (2009)

  9. Farrell, A., Vasseur, J.: A Path Computation Element (PCE)-Based Architecture. IETF RFC 4655 (2006)

  10. Giorgetti A., Sambo N., Cerutti I., Andriolli N., Castoldi P.: Label preference schemes for lightpath provisioning and restoration in distributed GMPLS networks. IEEE J. Lightw. Technol. 27(6), 688–697 (2009)

    Article  Google Scholar 

  11. Grobe, K.: Applications of ROADMs and control planes in metro and regional networks. In: Tech. Dig. OFC/NFOEC ’07 (2007)

  12. Herzog M., Maier M., Reisslein M.: Metropolitan area packet-switched WDM networks: a survey on ring systems. IEEE Commun. Surv. Tutor. 6(2), 2–20 (2004)

    Article  Google Scholar 

  13. Herzog M., Maier M., Wolisz A.: RINGOSTAR: an evolutionary AWG-based WDM upgrade of optical ring networks. IEEE J. Lightw. Technol. 23(4), 1637–1651 (2005)

    Article  Google Scholar 

  14. Koonen T.: Fiber to the home/fiber to the premises: what, where, and when. Proc. IEEE 94(5), 911–934 (2006)

    Article  Google Scholar 

  15. Maier M., Herzog M., Reisslein M.: STARGATE: the next evolutionary step toward unleashing the potential of WDM EPONs. IEEE Commun. Mag. 45(5), 50–56 (2007)

    Article  Google Scholar 

  16. Mannie, E.: Generalized multi-protocol label switching (GMPLS) architecture. IETF RFC 3945 (2004)

  17. Martinez R., Pinart C., Cugini F., Andriolli N., Valcarenghi L., Castoldi P., Wosinska L., Cornelias J., Junyent G.: Challenges and requirements for introducing impairment-awareness into the management and control planes of ason/gmpls wdm networks. IEEE Commun. Mag. 44(12), 76–85 (2006)

    Article  Google Scholar 

  18. McGarry M., Reisslein M., Maier M.: WDM ethernet passive optical networks. IEEE Commun. Mag. 44(2), S18–S25 (2006)

    Article  Google Scholar 

  19. Puype, B., Colle, D., Pickavet, M., Demeester, P.: Energy efficient multilayer traffic engineering. In: Proceedings of ECOC ’09 (2009)

  20. Sambo, N., Andriolli, N., Giorgetti, A., Castoldi, P., Bottari, G.: Multiple path based regenerator placement algorithm in translucent optical networks. In: Proceedings of ICTON ’09 (2009)

  21. Sambo N., Andriolli N., Giorgetti A., Valcarenghi L., Cerutti I., Castoldi P., Cugini F.: GMPLS-controlled dynamic translucent optical networks. IEEE Netw. 23(3), 34–40 (2009)

    Article  Google Scholar 

  22. Shea D.P., Mitchell J.E.: Long-reach optical access technologies. IEEE Netw. 21(5), 5–11 (2007)

    Article  Google Scholar 

  23. Simeonidou D., Nejabati R., Zervas G., Klonidis D., Tzanakaki A., O’Mahony M.: Dynamic optical-network architectures and technologies for existing and emerging grid services. IEEE J. Lightw. Technol. 23(10), 3347–3357 (2005)

    Article  Google Scholar 

  24. Wong, S.W., Shaw, W.T., Balasubramanian, K., Cheng, N., Kazovsky, L.: MARIN: demonstration of a flexible and dynamic metro-access integrated architecture. In: Proceedings of GLOBECOM ’07 (2007)

  25. Wu, J., Zhang, H., Campbell, S., Savoie, M., Bochmann, G., St Arnaud, B.: A grid oriented lightpath provisioning system. In: Proceedings of IEEE GLOBECOM Workshops ’04 (2004)

  26. Yuan P., Gambiroza V., Knightly E.: The 802.17 media access protocol for high-speed metropolitan-area resilient packet rings. IEEE Netw. 18(3), 8–15 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Giorgetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paolucci, F., Giorgetti, A., Sambo, N. et al. Enabling transparent lambda services between metro and core networks. Photon Netw Commun 23, 137–147 (2012). https://doi.org/10.1007/s11107-011-0344-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-011-0344-9

Keywords