Skip to main content
Log in

A simple analytical throughput–delay model for clustered FiWi networks

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A fiber-wireless (FiWi) network integrates a passive optical network (PON) with wireless mesh networks (WMNs) to provide high-speed backhaul via the PON while offering the flexibility and mobility of a WMN. Generally, increasing the size of a WMN leads to higher wireless interference and longer packet delays. We examine the partitioning of a large WMN into several smaller WMN clusters, whereby each cluster is served by an optical network unit (ONU) of the PON. Existing WMN throughput–delay analysis techniques considering the mean load of the nodes at a given hop distance from a gateway (ONU) are unsuitable for the heterogeneous nodal traffic loads arising from clustering. We introduce a simple analytical queuing model that considers the individual node loads to accurately characterize the throughput–delay performance of a clustered FiWi network. We verify the accuracy of the model through extensive simulations. We employ the model to examine the impact of the number of clusters on the network throughput–delay performance. We find that with sufficient PON bandwidth, clustering substantially improves the FiWi network throughput–delay performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agarwal, A., Kumar, P.R.: Capacity bounds for ad hoc and hybrid wireless networks. SIGCOMM Comput. Commun. Rev. 34(3), 71–81 (2004)

    Article  Google Scholar 

  2. Ahmed, A., Shami, A.: RPR-EPON-WiMAX hybrid network: A solution for access and metro networks. IEEE J. Opt. Commun. Netw. 4(3), 173–188 (2012)

    Article  Google Scholar 

  3. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comp. Netw. 47(4), 445–487 (2005)

    Article  MATH  Google Scholar 

  4. Ali, M., Ellinas, G., Erkan, H., Hadjiantonis, A., Dorsinville, R.: On the vision of complete fixed-mobile convergence. J. Lightwave Techn. 28(16), 2343–2357 (2010)

    Article  Google Scholar 

  5. Ali, N.A., Ekram, E., Eljasmy, A., Shuaib, K.: Measured delay distribution in a wireless mesh network test-bed. In: IEEE/ACS AICCSA, pp. 236–240 (2008)

  6. Alwan, N.A.: Performance analysis of Dijkstra-based weighted sum minimization routing algorithm for wireless mesh networks. Modelling and Simulation in Engineering 2014 (2014)

  7. Aurzada, F., Levesque, M., Maier, M., Reisslein, M.: FiWi access networks based on next-generation PON and gigabit-class WLAN technologies: A capacity and delay analysis. IEEE/ACM Trans. Netw. 22(4), 1176–1189 (2014)

  8. Aurzada, F., Scheutzow, M., Herzog, M., Maier, M., Reisslein, M.: Delay analysis of Ethernet passive optical networks with gated service. OSA J. Opt. Netw. 7(1), 25–41 (2008)

    Article  Google Scholar 

  9. Aurzada, F., Scheutzow, M., Reisslein, M., Ghazisaidi, N., Maier, M.: Capacity and delay analysis of next-generation passive optical networks (NG-PONs). IEEE Trans. Commun. 59(5), 1378–1388 (2011)

    Article  Google Scholar 

  10. Barradas, A., Correia, N., Coimbra, J., Schutz, G.: Load adaptive and fault tolerant framework for energy saving in fiber-wireless access networks. IEEE/OSA J. Optical Commun. Netw. 5(9), 957–967 (2013)

    Article  Google Scholar 

  11. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18(3), 535–547 (2000)

    Article  Google Scholar 

  12. Bisnik, N., Abouzeid, A.: Queuing network models for delay analysis of multihop wireless ad hoc networks. Ad Hoc Networks 7(1), 79–97 (2009)

    Article  Google Scholar 

  13. Bontozoglou, A., Yang, K., Guild, K.: A midterm DBA algorithm for quality of service on aggregation layer EPON networks. Photonic Network Communications 25(2), 120–134 (2013)

    Article  Google Scholar 

  14. Brun, O., Garcia, J.M.: Analytical solutions of finite capacity M/D/1 queues. J. Appl. Prob. 11, 1092–1098 (2000)

    Article  MathSciNet  Google Scholar 

  15. Bruno, R., Conti, M., Gregori, E.: Mesh networks: commodity multihop ad hoc networks. IEEE Communications Magazine 43(3), 123–131 (2005)

    Article  Google Scholar 

  16. Bruno, R., Conti, M., Pinizzotto, A.: Routing internet traffic in heterogeneous mesh networks: analysis and algorithms. Performance Evaluation 68(9), 841–858 (2011)

    Article  Google Scholar 

  17. Castoldi, P., Paolucci, F., Giorgetti, A., Maier, M.: Interconnection of long-reach PON and backbone networks. In: Proc. ICTON, pp. 1–4 (2009)

  18. Chen, Y., Chen, J., Yang, Y.: Multi-hop delay performance in wireless mesh networks. Mobile Networks and Applications 13(1–2), 160–168 (2008)

    Article  Google Scholar 

  19. Chien, S.F., Lo, K.K., Kwong, K.H., Poh, G.S., Chieng, D.: Delay, throughput and packet absorption rate analysis of heterogeneous WMN. In: Proc. IET ICWCA, pp. 1–6 (2012)

  20. Dashti, Y., Reisslein, M.: CluLoR: Clustered localized routing for FiWi networks. Journal of Networks 9(4), 828–839 (2014)

    Article  Google Scholar 

  21. Dhaini, A., Ho, P.H., Jiang, X.: QoS control for guaranteed service bundles over Fiber-Wireless (FiWi) broadband access networks. J. Lightwave Techn. 29(10), 1500–1513 (2011)

    Article  Google Scholar 

  22. Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh networks. In: Proc. ACM MobiCom, pp. 114–128 (2004)

  23. Effenberger, F., Clearly, D., Haran, O., Kramer, G., Li, R.D., Oron, M., Pfeiffer, T.: An introduction to PON technologies. IEEE Commun. Mag. 45(3), S17–S25 (2007)

    Article  Google Scholar 

  24. Fadlullah, M., Nishiyama, H., Kawamoto, Y., Ujikawa, H., Suzuki, K.I., Yoshimoto, N.: Cooperative QoS control scheme based on scheduling information in FiWi access network. IEEE Trans. Emerging Topics in Computing 1(2), 375–383 (2013)

    Article  Google Scholar 

  25. Feng, Y., Shen, X., Gao, Z., Dai, G.: Queuing based traffic model for wireless mesh networks. In: IEEE ICPADS, pp. 648–654 (2009)

  26. Fu, W., Wang, Y., Agrawal, D.P.: Delay and capacity optimization in multi-radio multi-channel wireless mesh networks. In: IEEE IPCCC, pp. 152–159 (2008)

  27. Gamal, A., Mammen, J., Prabhakar, B., Shah, D.: Throughput-delay trade-off in wireless networks. In: Proc. IEEE Infocom, pp. 464–475 (2004)

  28. Gambiroza, V., Sadeghi, B., Knightly, E.W.: End-to-end performance and fairness in multihop wireless backhaul networks. In: Proc. ACM MobiCom, pp. 287–301 (2004)

  29. Ghazisaidi, N., Maier, M.: Fiber-wireless (FiWi) access networks: Challenges and opportunities. IEEE Network 25(1), 36–42 (2011)

    Article  Google Scholar 

  30. Gross, D., Harris, C.M.: Fundamentals of Queuing Theory. Wiley-Interscience,   (1998)

  31. Grossglauser, M., Tse, D.: Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Netw. 10(4), 477–486 (2002)

    Article  Google Scholar 

  32. Gupta, P., Kumar, P.: The capacity of wireless networks. IEEE Trans. Info. Th. 46(2), 388–404 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. He, S., Shou, G., Hu, Y., Guo, Z.: Performance of multipath in Fiber-Wireless (FiWi) access network with network virtualization. In: Proc. IEEE Milcom, pp. 928–932 (2013)

  34. Ho, P., Holtby, D.W., Lim, K., Kwong, K., Chieng, D., Ting, A., Chien, S.: End-to-end throughput and delay analysis of WiFi multi-hop network with deterministic offered load. In: Proc. IET ICWCA, pp. 1–6 (2012)

  35. Honda, M., Nishiyama, H., Nomura, H., Yada, T., Yamada, H., Kato, N.: On the performance of downstream traffic distribution scheme in fiber-wireless networks. In: Proc. IEEE WCNC, pp. 434–439 (2011)

  36. Hu, M.X., Kuo, G.S.: Delay and throughput analysis of IEEE802.11s networks. In: Proc. IEEE ICC, pp. 73–78 (2008)

  37. Ikeda, M., Honda, T., Oda, T., Sakamoto, S., Chang, X., Barolli, L.: Analysis of WMN-GA simulation results: WMN performance optimizing the number of mesh routers. In: Proc. IEEE CISIS, pp. 157–163 (2013)

  38. Jimenez, T., Merayo, N., Fernandez, P., Duran, R.J., de Miguel, I., Lorenzo, R.M., Abril, E.J.: Self-adapted algorithm to provide multi-profile bandwidth guarantees in pons with symmetric and asymmetric traffic load. Photonic Network Communications 24(1), 58–70 (2012)

    Article  Google Scholar 

  39. Kantarci, B., Mouftah, H.: Energy efficiency in the extended-reach fiber-wireless access networks. IEEE Network 26(2), 28–35 (2012)

    Article  Google Scholar 

  40. Law, L., Pelechrinis, K., Krishnamurthy, S., Faloutsos, M.: Downlink capacity of hybrid cellular ad hoc networks. IEEE/ACM Trans. Netw. 18(1), 243–256 (2010)

    Article  Google Scholar 

  41. Lee, J., Liao, W., Chen, M.C.: An incentive-based fairness mechanism for multi-hop wireless backhaul networks with selfish nodes. IEEE Trans. Wireless Comm. 7(2), 697–704 (2008)

    Article  Google Scholar 

  42. Lee, M., Zheng, J., Ko, Y.B., Shrestha, D.: Emerging standards for wireless mesh technology. IEEE Wireless Communications 13(2), 56–63 (2006)

    Article  Google Scholar 

  43. Lee, Y., Choi, S., Choi, Y.: End-to-end delay differentiation mechanism for integrated EPON-WiMAX networks. Photonic Network Communications 27(2), 73–79 (2014)

    Article  MathSciNet  Google Scholar 

  44. Li, P., Zhang, C., Fang, Y.: Capacity and delay of hybrid wireless broadband access networks. IEEE J. Sel. Areas Commun. 27(2), 117–125 (2009)

    Article  Google Scholar 

  45. Li, S., Wang, J., Qiao, C., Xu, Y.: Mitigating packet reordering in FiWi networks. IEEE/OSA J. Opt. Commun. Netw. 3(2), 134–144 (2011)

    Article  Google Scholar 

  46. Lin, P., Dow, C.R., Hsuan, P., Hwang, S.F.: An efficient traffic control system using dynamic thresholding techniques in wireless mesh networks. Int. J. Commun. Systems 24(3), 325–346 (2011)

  47. Lin, P.C., Cheng, R.G., Liao, L.H.: Performance analysis of two-level QoS scheduler for wireless backhaul networks. IEEE Trans. Vehicular Techn. 61(3), 1361–1371 (2012)

    Article  Google Scholar 

  48. Liu, B., Liu, Z., Towsley, D.: On the capacity of hybrid wireless networks. In: Proc. IEEE Infocom, pp. 1543–1552 (2003)

  49. Liu, C.Y., Fu, B., Huang, H.J.: Delay minimization and priority scheduling in wireless mesh networks. Wireless Networks pp. 1–11 (2014)

  50. Liu, T., Liao, W.: Location-dependent throughput and delay in wireless mesh networks. IEEE Trans. Vehicular Techn. 57(2), 1188–1198 (2008)

    Article  Google Scholar 

  51. Liu, T., Liao, W.: Multicast routing in multi-radio multi-channel wireless mesh networks. IEEE Trans. Wireless Communications 9(10), 3031–3039 (2010)

    Article  MathSciNet  Google Scholar 

  52. Liu, W., Zhao, D., Zhu, G.: End-to-end delay and packet drop rate performance for a wireless sensor network with a cluster-tree topology. Wireless Commun. Mobile Comp. 14(7), 729–744 (2012)

    Article  Google Scholar 

  53. Liu, Y., Song, Q., Li, B., Ma, R.: Load balanced optical network unit (ONU) placement in cost-efficient fiber-wireless (FiWi) access network. Optik-Int. J. Light Electron Optics 124(20), 4594–4601 (2013)

    Article  Google Scholar 

  54. Ma, X., Gan, C., Wu, C., Deng, S., Cao, Y.: A reliable WDM optical access network enabling dynamic wavelength allocation and triple-play service. Photonic Netw. Commun. 23(3), 259–264 (2012)

    Article  Google Scholar 

  55. Maier, M., Levesque, M., Ivanescu, L.: NG-PONs 1 & 2 and beyond: the dawn of the uber-FiWi network. IEEE Network 26(2), 15–21 (2012)

    Article  Google Scholar 

  56. Maier, M., Reisslein, M., Wolisz, A.: A hybrid MAC protocol for a metro WDM network using multiple free spectral ranges of an arrayed-waveguide grating. Computer Networks 41(4), 407–433 (2003)

    Article  MATH  Google Scholar 

  57. Malnar, M., Neskovic, N., Neskovic, A.: Novel power-based routing metrics for multi-channel multi-interface wireless mesh networks. Wireless Netw. 20(1), 41–51 (2014)

    Article  Google Scholar 

  58. McGarry, M.P., Reisslein, M.: Investigation of the DBA algorithm design space for EPONs. J. Lightwave Techn. 30(14), 2271–2280 (2012)

    Article  Google Scholar 

  59. Mercian, A., McGarry, M.P., Reisslein, M.: Offline and online multi-thread polling in long-reach PONs: A critical evaluation. IEEE/OSA J. Lightwave Techn. 31(12), 2018–2028 (2013)

    Article  Google Scholar 

  60. Naeini, V.S.: Performance analysis of WiMAX-based wireless mesh networks using an M/D/1 queuing model. Int. J. Wirel. Mobile Comp. 7(1), 35–47 (2014)

    Article  Google Scholar 

  61. Pandey, S., Tambakad, V., Kadambi, G., Vershinin, Y.: An analytic model for route optimization in load shared wireless mesh network. In: Proc. IEEE EMS, pp. 543–548 (2013)

  62. Qi, H., Chen, Z., Zhang, L.: Towards end-to-end delay bounds on WMNs based on statistical network calculus. In: Proc. IEEE ICYCS, pp. 493–497 (2008)

  63. Rawshan, F., Park, Y.: Architecture of multi-OLT PON systems and its bandwidth allocation algorithms. Photonic Netw. Commun. 25(2), 95–104 (2013)

    Article  Google Scholar 

  64. Sankaran, G.C., Sivalingam, K.M.: ONU buffer reduction for power efficiency in passive optical networks. Optical Switching Netw. 10(4), 416–429 (2013)

    Article  Google Scholar 

  65. Sarkar, S., Dixit, S., Mukherjee, B.: Hybrid wireless-optical broadband-access network (WOBAN): A review of relevant challenges. IEEE J. Lightwave Techn. 25(11), 3329–3340 (2007)

    Article  Google Scholar 

  66. Sarkar, S., Yen, H.H., Dixit, S., Mukherjee, B.: Hybrid wireless-optical broadband access network (WOBAN): Network planning using Lagrangean relaxation. IEEE/ACM Trans. Netw. 17(4), 1094–1105 (2009)

    Article  Google Scholar 

  67. Scheutzow, M., Maier, M., Reisslein, M., Wolisz, A.: Wavelength reuse for efficient packet-switched transport in an AWG-based metro WDM network. IEEE J. Lightwave Techn. 21(6), 1435–1455 (2003)

    Article  Google Scholar 

  68. Seoane, I., Hernandez, J.A., Romeral, R., Larrabeiti, D.: Analysis and simulation of a delay-based service differentiation algorithm for IPACT-based PONs. Photonic Network Communications 24(3), 228–236 (2012)

    Article  Google Scholar 

  69. Shila, D., Cheng, Y., Anjali, T.: Throughput and delay analysis of hybrid wireless networks with multi-hop uplinks. In: Proc. IEEE Infocom, pp. 1476–1484 (2011)

  70. Sivakumar, A., Sankaran, G.C., Sivalingam, K.M.: Performance analysis of ONU-wavelength grouping schemes for efficient scheduling in long reach-PONs. Optical Switching Netw. 10(4), 465–474 (2013)

    Article  Google Scholar 

  71. Skubic, B., Chen, J., Ahmed, J., Wosinska, L., Mukherjee, B.: A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON. IEEE Commun. Mag. 47(3), S40–S48 (2009)

    Article  Google Scholar 

  72. Sue, C.C., Chuang, K.C., Wu, Y.T., Lin, S.J., Liu, C.C.: Active intra-ONU scheduling with proportional guaranteed bandwidth in long-reach EPONs. Photonic Network Commun. 27(3), 106–118 (2014)

    Article  Google Scholar 

  73. Tang, J., Xue, G., Zhang, W.: Interference-aware topology control and QoS routing in multi-channel wireless mesh networks. In: Proc. ACM MobiHoc, pp. 68–77 (2005)

  74. Tijms, H.: New and old results for the M/D/c queue. I. J. Electr. Commun. 60(2), 125–130 (2006)

    Google Scholar 

  75. Togashi, K., Nishiyama, H., Kato, N., Ujikawa, H., Suzuki, K.I., Yoshimoto, N.: Cross layer analysis on ONU energy consumption in smart FiWi networks. IEEE Wireless Commun. Letters 2(6), 695–698 (2013)

    Article  Google Scholar 

  76. Toumpis, S.: Capacity bounds for three classes of wireless networks: Asymmetric, cluster, and hybrid. In: Proc. ACM MobiHoc, pp. 133–144 (2004)

  77. Tu, W., Sreenan, C.: Adaptive split transmission for video streams in wireless mesh networks. In: Proc. IEEE WCNC, pp. 3122–3127 (2008)

  78. Vieira, F.R., de Rezende, J.F., Barbosa, V.C., Fdida, S.: Scheduling links for heavy traffic on interfering routes in wireless mesh networks. Computer Networks 56(5), 1584–1598 (2012)

    Article  Google Scholar 

  79. Wang, D., Abouzeid, A.A.: Throughput and delay analysis for hybrid radio-frequency and free-space-optical (RF/FSO) networks. Wireless Netw. 17(4), 877–892 (2011)

    Article  Google Scholar 

  80. Wang, G., Wang, N., Lai, M.: An end-to-end delay bound based on stochastic network calculus in wireless mesh network. In: Proc. Future Wireless Networks and Information Systems, pp. 235–242 (2012)

  81. Wang, J., Wu, K., Li, S., Qiao, C.: Performance modeling and analysis of multi-path routing in integrated fiber-wireless networks. In: Proc. IEEE Infocom, pp. 1–5 (2010)

  82. Wang, Z., Yang, K., Hunter, D.K.: A dynamic bandwidth allocation algorithm for a multi-sink wireless sensor network converged with a passive optical network. In: Proc. IEEE TrustCom, pp. 1548–1554 (2012)

  83. Wu, X., Liu, J., Chen, G.: Analysis of bottleneck delay and throughput in wireless mesh networks. In: Proc. IEEE MASS, pp. 765–770 (2006)

  84. Xie, M., Haenggi, M.: Towards an end-to-end delay analysis of wireless multihop networks. Ad Hoc Networks 7(5), 849–861 (2009)

    Article  Google Scholar 

  85. Yang, H.S., Maier, M., Reisslein, M., Carlyle, W.M.: A genetic algorithm-based methodology for optimizing multiservice convergence in a metro WDM network. IEEE/OSA J. Lightwave Techn. 21(5), 1114–1133 (2003)

    Article  Google Scholar 

  86. Yang, Q., Jin, Z., Huang, X.: Research on delay and packet loss control mechanism in wireless mesh networks. Journal of Networks 9(4) (2014)

  87. Zaker, N., Kantarci, B., Erol-Kantarci, M., Mouftah, H.T.: Smart grid monitoring with service differentiation via epon and wireless sensor network convergence. Opt. Sw, Netw (2014)

  88. Zemlianov, A., de Veciana, G.: Capacity of ad hoc wireless networks with infrastructure support. IEEE J. Sel. Areas Commun. 23(3), 657–667 (2005)

    Article  Google Scholar 

  89. Zhao, S., Raychaudhuri, D.: Scalability and performance evaluation of hierarchical hybrid wireless networks. IEEE Trans. Netw. 17(5), 1536–1549 (2009)

    Article  Google Scholar 

  90. Zheng, Z., Wang, J., Wang, J.: A study of network throughput gain in optical-wireless (FiWi) networks subject to peer-to-peer communications. In: Proc. IEEE ICC, pp. 1–6 (2009)

  91. Zheng, Z., Wang, J., Wang, X.: ONU placement in Fiber-Wireless (FiWi) networks considering peer-to-peer communications. In: Proc. IEEE Globecom, pp. 1–7 (2009)

  92. Zhou, L., Wong, H.L., Yeo, Y.K., Cheng, X., Shao, X., Xu, Z.: Traffic scheduling in hybrid WDM-TDM PON with wavelength-reuse ONUs. Photonic Network Communications 24(2), 151–159 (2012)

    Article  Google Scholar 

  93. Zhou, P., Wang, X., Rao, R.: Asymptotic capacity of infrastructure wireless mesh networks. IEEE Trans. Mobile Computing 7(8), 1011–1024 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Reisslein.

Appendices

Appendix 1: Review of \(M/M/1/K\) Queue

Define the traffic intensity as \(\rho = \lambda / \mu \), where \(\lambda \) and \(\mu \) are the packet arrival rate and the packet service rate of the queue holding at most \(K\) packets. The queue holds \(K\) packets, i.e., blocks newly arriving packets, with probability [30]:

$$\begin{aligned} P_{\mathrm{M},K}(\rho ,K) = \left\{ \begin{array}{ll} \frac{(1-\rho )\rho ^K}{1-\rho ^{K+1}} &{} \text{ if } \quad \rho \ne 1 \\ \frac{1}{K+1} &{} \text{ if } \quad \rho = 1. \end{array} \right. \end{aligned}$$
(29)

The probability of the queue being empty is:

$$\begin{aligned} P_{\mathrm{M},0}(\rho ,K) = \left\{ \begin{array}{ll} \frac{1-\rho }{1-\rho ^{K+1}} &{} \text{ if } \quad \rho \ne 1 \\ \frac{1}{K+1} &{} \text{ if } \quad \rho = 1 \end{array} \right. \end{aligned}$$
(30)

and \(P_{0,i}\) in Eq. (5) can be obtained as:

$$\begin{aligned} P_{0,i}=P_{\mathrm{M},0}(\rho _i,K). \end{aligned}$$
(31)

The average queue length is [30]:

$$\begin{aligned} L_\mathrm{M}(\rho ,K) = \left\{ \begin{array}{ll} \frac{\rho }{1-\rho }-\frac{\rho (K\rho ^K+1)}{1-\rho ^{K+1}} &{} \text{ if } \quad \rho \ne 1 \\ \frac{K(K-1)}{2(K+1)} &{} \text{ if } \quad \rho = 1. \end{array} \right. \end{aligned}$$
(32)

The average waiting time is:

$$\begin{aligned} W_\mathrm{M}(\mu ,\lambda ,K)=\frac{1}{\mu } +\frac{L_{\mathrm{M}}(\rho ,K)}{\lambda [1-P_{\mathrm{M},K}(\rho ,K)]}. \end{aligned}$$
(33)

Appendix 2: Review of \(M/D/1/K\) Queue

Define input packet rate \(\lambda \), output packet rate \(\mu \), and traffic intensity \(\rho =\lambda /\mu \). Denote \(P_{\mathrm{D}, k}(\rho , K),\ k=0, \ldots , K\), for the stationary state probabilities of holding \(k\) packets in the queue. For \(0 \le k \le K-1\), the steady state probability can be obtained with the recursion [30]:

$$\begin{aligned} P_{\mathrm{D}, k}(\rho , K)=\lambda a_{k-1} P_{\mathrm{D},0}(\rho , K)+\lambda \sum _{j=1}^k a_{k-j} P_{\mathrm{D},j}(\rho , K), \end{aligned}$$
(34)

where \(a_n=\frac{1}{\lambda } (1-\sum _{j=1}^n{\mathrm{e}^{-\rho }\rho ^j/j!})\). The \(K\)th state probability, i.e., the blocking probability, is:

$$\begin{aligned} P_{\mathrm{D}, K}(\rho , K)= \rho P_{\mathrm{D}, 0}(\rho , K) -(1-\rho )\sum _{j=1}^{K-1} P_{\mathrm{D}, j}(\rho , K).\nonumber \\ \end{aligned}$$
(35)

The recursion starts with \(P_{\mathrm{D},0}=1\) and the state probabilities are normalized with the equation \(\sum _{i=0}^K P_{\mathrm{D},i}(\rho , K)=1\). An explicit formula for \(P_{\mathrm{D}, k}(\rho , K)\) is derived in [14], but the calculation process involves a large number operations for large \(K\) and may not be suitable for computational work [74]. With the state probabilities, the average waiting time \(W_\mathrm{D}(\mu , \lambda , K)\) of an \(M/D/1/K\) queue can be evaluated by applying Little’s law:

$$\begin{aligned} W_\mathrm{D}(\mu , \lambda , K)=\frac{1}{\mu }+ \frac{L_\mathrm{D}(\rho , K)}{\lambda [1-P_{\mathrm{D}, K}(\rho , K)]}, \end{aligned}$$
(36)

where \(L_\mathrm{D}(\rho , K)=\sum _{k=0}^K k P_{\mathrm{D},k}(\rho , K)\) is the average length of the \(M/D/1/K\) queue.

Appendix 3: Bandwidth Fair Sharing for WMN

One of the major problems of a WMN is the fairness share problem [28, 41] where the nodes with higher hop distance suffer from lower throughput compared to the nodes with lower hop distance. For a TDMA system, it is desired that the wireless nodes closer to the gateways should be allocated more radio resources, i.e., higher channel access probability \(p(x)\) for lower hop count \(x\), since they have to provide more relay services. If the scheduling scheme failed to provide sufficient radio resources to the wireless nodes closer to the gateways to maintain a reasonable relay traffic intensity, then low throughout and high delay would occur due to frequent buffer overflow and further affect the overall performance of the WMN. Liu and Liao [50] proposed the following wireless channel allocation scheme which we apply to the FiWi network:

$$\begin{aligned} \frac{p(x)}{p(x+1)}=N_\mathrm{r}(x) \left[ 1 + \frac{1}{R(x)} \right] ,\ x=1, 2, \ldots , H-1.\nonumber \\ \end{aligned}$$
(37)

where

$$\begin{aligned} R(x)=\sum _{i=x}^H\prod _{j=x}^iN_\mathrm{r}(i),\quad x=1, 2, \ldots , H-1, \end{aligned}$$

and

$$\begin{aligned} N_\mathrm{r}(x) = \left\{ \begin{array}{ll} \frac{N(x+1)}{N(x)} &{} \text{ if } \quad x=1, \ldots , H-1 \\ 0 &{} \text{ if } \quad x = H. \end{array} \right. \end{aligned}$$
(38)

Equation (37) gives the \(p(x)\) design criteria which provide fair throughput to all wireless mesh nodes regardless of the hop distances under the assumption that the relayed traffic is distributed evenly among the wireless mesh nodes. Inequality

$$\begin{aligned} q(x)>1- \frac{1}{1+R(x)}. \end{aligned}$$
(39)

specifies a lower bound for the forwarding probability \(q(x)\) ensuring that an \(x\)-hop node is capable of providing fair bandwidth allocation [50].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, PY., Reisslein, M. A simple analytical throughput–delay model for clustered FiWi networks. Photon Netw Commun 29, 78–95 (2015). https://doi.org/10.1007/s11107-014-0471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-014-0471-1

Keywords

Navigation