Skip to main content

Facing the traffic explosion in metro transport networks with energy-sustainable architectures

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The continuous growth of traffic volumes is making the consumed energy, in telecommunication networks, a critical issue. In this context, the implementation of new content distribution solutions will speed up this traffic increase. In particular, these solutions will significantly impact the traffic profile in metro networks. The current centralized traffic scenario will move toward a scenario in which the traffic exchanges would be distributed among all the nodes of the metro network. In this work, starting from a real traffic scenario, we estimate a possible traffic evolution, and we design the metro networks, according to different architectures, using integer linear programming formulations. The aim was to understand which architecture can better face the considered traffic evolution. The comparison is performed considering the energy consumption, the network setup and management, and the quality of service ensured by the architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bianco, A., Bonald, T., Cuda, D., Indre, R.M.: Cost, power consumption and performance evaluation of metro networks. J. Opt. Commun. Netw. 5(1), 81–91 (2013)

    Article  Google Scholar 

  2. Carena, A., De Feo, V., Finochietto, J.M., Gaudino, R., Neri, F., Piglione, C., Poggiolini, P.: RingO: an experimental WDM optical packet network for metro applications. IEEE J. Sel. Areas Commun. 22(8), 1561–1571 (2004)

    Article  Google Scholar 

  3. Chabarek, J., Sommers, J., Barford, P., Estan, C., Tsiang, D., Wright, S.: Power awareness in network design and routing. In: 27th Conference on Computer Communications (INFOCOM). IEEE (2008)

  4. Chiaroni, D., Buforn, G., Simonneau, C., Etienne, S., Antona, J.C.: Optical packet add/drop systems. In: Optical Fiber Communication Conference, p. OThN3. Optical Society of America (2010)

  5. Cisco, I.: Cisco visual networking index: Forecast and methodology, 2011–2016. CISCO White paper pp. 2011–2016 (2012)

  6. Develder, C., Stavdas, A., Bianco, A., Careglio, D., Lønsethagen, H., Giménez, J., Caenegem, R.V., Sygletos, S., Neri, F., Solé-Pareta, J., et al.: Benchmarking and viability assessment of optical packet switching for metro networks. J. Light. Technol. 22(11), 2435 (2004)

    Article  Google Scholar 

  7. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl, B.: Globally distributed content delivery. IEEE Internet Comput. 6(5), 50–58 (2002)

    Article  Google Scholar 

  8. Enerdata: Global energy statistical yearbook 2012 (2012). URL http://yearbook.enerdata.net/world-electricity-production-map-graph-and-data.html

  9. Gravey, A., Guillemin, F., Moteau, S.: Last mile caching of video content by an ISP. In: ETS 2013: 2nd European Teletraffic Seminar (2013)

  10. Herzog, M., Maier, M., Reisslein, M.: Metropolitan area packet-switched WDM networks: a survey on ring systems. IEEE Commun. Surv. Tutor. 6(2), 2–20 (2004)

    Article  Google Scholar 

  11. IEEE Std 1904.1-2013: IEEE Standard for Service Interoperability in Ethernet Passive Optical Networks (SIEPON) (2013)

  12. Index, Cisco Visual Networking: The zettabyte era. San Jose, CA, May 30 (2012)

  13. ITU-T SG15: Some considerations for modelling Sub-Lambda Photonic Switched Networks (SLPSN) (2014). URL http://www.itu.int/md/T13-SG15-C-0015

  14. Juniper Network Routers: (2014). URL http://www.juniper.net/products-services/routing/

  15. Le Sauze, N., Dupas, A., Dotaro, E., Ciavaglia, L., Nizam, M., Ge, A., Dembeck, L.: A novel, low cost optical packet metropolitan ring architecture. In: 27th European Conference on Optical Communication (ECOC’01), vol. 6, pp. 66–67. IEEE (2001)

  16. Shrikhande, K.V., White, I.M., Wonglumsom, Dr, Gemelos, S.M., Rogge, M.S., Fukashiro, Y., Avenarius, M., Kazovsky, L.G.: HORNET: a packet-over-WDM multiple access metropolitan area ring network. IEEE J. Sel. Areas Commun. 18(10), 2004–2016 (2000)

    Article  Google Scholar 

  17. Triki, A., Gavignet, P., Arzur, B., Rouzic, E., Gravey, A.: Efficient control plane for passive optical burst switching network. In: International Conference on Information Networking (ICOIN), pp. 535–540. IEEE (2013)

  18. Valancius, V., Laoutaris, N., Massoulié, L., Diot, C., Rodriguez, P.: Greening the internet with nano data centers. In: Proceedings of the 5th international conference on Emerging networking experiments and technologies, pp. 37–48. ACM (2009)

  19. Veeraraghavan, M., Zheng, X.: A reconfigurable ethernet/SONET circuit-based metro network architecture. IEEE J. Sel. Areas Commun. 22(8), 1406–1418 (2004)

    Article  Google Scholar 

  20. Veitch, P.: A survivable and cost-effective IP metro interconnect architecture. IEEE Commun. Mag. 41(12), 100–105 (2003)

    Article  Google Scholar 

  21. Vogt, C., Werner, M.J., Schmidt, T.C.: Leveraging WebRTC for P2P content distribution in web browsers. In: ICNP, pp. 1–2 (2013)

  22. Webb, M., et al.: SMART 2020: enabling the low carbon economy in the information age. Clim. Group Lond. 1(1), 1–1 (2008)

    Google Scholar 

  23. Widjaja, I., Saniee, I., Giles, R., Mitra, D.: Light core and intelligent edge for a flexible, thin-layered, and cost-effective optical transport network. IEEE Commun. Mag. 41(5), S30–S36 (2003)

    Article  Google Scholar 

  24. Zervas, G.S., Triay, J., Amaya, N., Qin, Y., Cervelló-Pastor, C., Simeonidou, D.: Time shared optical network (TSON): a novel metro architecture for flexible multi-granular services. Opt. Express 19(26), B509–B514 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Bonetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonetto, E., Le Rouzic, E., Sadeghioon, L. et al. Facing the traffic explosion in metro transport networks with energy-sustainable architectures. Photon Netw Commun 30, 29–42 (2015). https://doi.org/10.1007/s11107-015-0493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0493-3

Keywords