Abstract
Cloud computing and Web-based applications are creating a need for powerful data centers. Data centers have a great need for high bandwidth, low latency, low blocking probability, and low bit-error rate to sustain the interaction between different applications. Current data center networks (DCNs) suffer from several problems such as high-energy consumption, high latency, fixed throughput of links, and limited reconfigurability. Electronic switches are low radix and have high latency due to a large hop count since each hop employs a store-and-forward mechanism. Optical interconnects, on the other hand, offer several advantages such as low-energy consumption, high bandwidth, reconfigurability, malleability to changing traffic, high-radix switch design, fast switching transition times, and wavelength multiplexing. These benefits provide the incentive to shift from electrical interconnects to optical interconnects in DCNs. Despite several advantages over their electrical counterparts, the performance of optical interconnects can be further improved by considering some performance parameters of optical interconnects. One such important parameter for the performance of any communication network is the blocking probability. This paper makes a comprehensive investigation of the performance of optical interconnects in different DCN architectures on the basis of blocking probability and concludes by suggesting ways to reduce the blocking.

































Similar content being viewed by others
References
Kachris, C., Tomkos, I.: Power consumption evaluation of all-optical data center networks. Springer Cloud Comput. J. 16(3), 611–623 (2013). doi:10.1007/s10586-012-0227-6
Cui, H., Rasooly, D., Ribeiro, M.R.N., Kazovsky, L.: ‘Optically cross-braced Hypercube: a reconfigurable physical layer for interconnects and server centric data centers’. Optical Fiber Communication Conference and Exposition, pp. 1–2, (2012). doi:10.1364/OFC.2012.OW3J.1
Xu, L., Singh, A., Zhang, Y.: ‘Optically interconnected data center networks’. OFC/NFOEC Technical Digest, (2012). doi:10.1364/OFC.2012.OW3J.3
Miller, D.A.B.: Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97(7), 1166–1185 (2009). doi:10.1109/JPROC.2009.2014298
Tucker, R.S.: Green optical communicationspart II: Energy limitations in networks. IEEE J. Sel. Top. Quantum Electron. 17(2), 261–274 (2010). doi:10.1109/JSTQE.2010.2051217
Wang, H., Bergman K.: Optically interconnected data center architecture for bandwidth intensive energy efficient networking. IEEE 14th International Conference on Transparent Optical Networks (ICTON), pp. 1–4. (2012). doi:10.1109/ICTON.2012.6253873
Xu, L., Zhang, W., Lira, H.L.R., Lipson, M., Bergman, K.: A hybrid optical packet and wavelength selective switching platform for high performance data center networks. Opt. Express 19(24), 24258–24267 (2011). doi:10.1364/OE.19.024258
Chen, K., Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y., Wen, X., Chen, Y.: OSA: an optical switching architecture for data center networks with unprecedented flexibility. Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, pp. 498–511 (2012). doi:10.1109/TNET.2013.2253120
Proietti, R., Ye, X., Yin, Y., Potter, A., Yu, R., Kurumida, J., Akella, V., Ben Yoo, S.J.: 40 Gb/s \(8\times 8\) low latency optical switch for data centers. Optical Fiber Communication Conference. doi:10.1364/OFC.2011.OMV4
Fat tree topology: http://en.wikipedia.org/wiki/Fat_tree, last accessed: 18 Sept 2014
Kim, J., Dally, W.J., Abts, D.: Flattened Butterfly: A cost-efficient topology for high-radix networks. ISCA’07 Proceedings of the 34th Annual International Symposium on Computer Architecture, 35(2), pp. 126–137 (2007)
Calabretta, N., Luo, J., Lucente, S.D., Dorren, H.: Experimental assessment of low latency and large port count OPS for data center network interconnects. 14th International Conference on Transparent Optical Networks, pp. 1–4. (2012). doi:10.1109/ICTON.2012.6254381
Brunina, D., Lai, C.P., Garg, A.S., Bergman, K.: Building data centers with optically connected memory. J. Opt. Commun. Netw. 3(8), A40–A48 (2011). doi:10.1364/JOCN.3.000A40
http://www.isi.edu/nsnam/ns/. Last Accessed Aug 2014
http://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-data-centers/. Last Accessed 8 Jan 2015
Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y.: Proteus: a topology malleable data center network. Hotnets-IX Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topicsin Networks, Article No 8, (2010). doi:10.1145/1868447.1868455
Xi, K., Kao, Y.-H., Jonathan Chao, H.: Petabit optical switch for data center networks. http://eeweb.poly.edu/chao/publications/petasw. Last Accessed 14 Apr 2014
Xi, K., Kao, Y.-H., Jonathan Chao, H.: A petabit bufferless optical switch for data center networks. Springer Link Book Title: Optical Interconnects for Future Data Center Networks, pp. 135–154. Print ISBN: 978-1-4614-4629-3. 2013
Neel, B., Morris, R., Ditomaso, D., Kodi, A.: SPRINT: scalable photonic switching fabric for high performance computing (HPC). IEEE J. Opt. Commun. Netw. 4(9), A38–A47 (2012). doi:10.1364/JOCN.4.000A38
Ji, P.N., Qian, D., Kanonakis, K., Kachris, C., Tomkos, I.: Design and evaluation of a flexible bandwidth OFDM intra data center interconnect. IEEE J. Sel. Top. Quantum Electron. 19(2), 3700310 (2013). doi:10.1109/JSTQE.2012.2209409
Kodi, A.K., Louri, A.: Energy efficient and bandwidth reconfigurable photonic networks for high performance computing systems. IEEE J. Sel. Top. Quantum Electron. 17(2), 384–395 (2011). doi:10.1109/JSTQE.2010.2051419
Di Lucente, S., Centelles, R.P., Dorren, H.J.S., Calabretta, N.: Study of the performance of an optical packet switch architecture with highly distributed control in data center environment. IEEE 16th International Conference on Optical Network Design and Modeling (ONDM), pp. 1–6, (2012). doi:10.1109/ONDM.2012.6210266
Ye, X., Yin, Y., Yoo, S.J.B., Mejia, P., Proietti, R., Akella, V.: DOS: a scalable optical switch for datacenters. ANCS’10, ACM/IEEE Symposium on Architectures for Networking andCommunications Systems, Article No 24 (2010). doi:10.1145/1872007.1872037
Liboriron, O., Isabella, C., Pier Giorgio, R., Nicola, A., Piero, C.: Energy efficient design of a scalable optical multiplane interconnection architecture. IEEE J. Sel. Top. Quantum Electron. 17(2), 377–383 (2010). doi:10.1109/JSTQE.2010.2049733
Kong, Q., Huang, S., Zhou, Y., Zhang, M., Zhao, Y., Guo, B., Zhang, J., Gu, W.: MMTDnet—A novel optical circuit switch architecture for data center networks. ACP/IP’OC (2013). doi:10.1364/ACPC.2013.AF2G.13
Farrington, N., Forencich, A., Sun, P.-C., Fainman, S., Ford, J., Vahdat, A., Porter, G., Papen, G.: A ten microsecond hybrid optical/circuit electrical packet network for datacenters. OFC/NFOEC, Anaheim, California, Mar 2013
Gripp, J., Simsarian, J.E., LeGrange, J.D., Bernasconi, P., Neilson, D.T.: Photonic terabit routers: the IRIS project. IEEE Conference on Optical Fiber Communication (OFC), National Fiber Optic Engineers Conference, pp. 1–3. E-ISBN: 978-1-55752-884-1. 2010
Luijten, R., Denzel, W.E., Grzybowski, R.R., Hemenway, R.: Optical interconnection networks: the OSMOSIS project. 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Vol. 2, pp. 563–564. Print ISBN: 0-7803-8557-8. 2004
Bilal, K., Khan, S.U., Zhang, L., Li, H., Hayat, K., Madani, S.A., Min-Allah, N., Wang, L., Chen, D., Iqbal, M., Xu, C.-Z., Zomaya, A.Y.: Quantitative Comparisons of the State of the Art Data Center Architectures. Concurrency and Computation: Practice and Experience 25(12), 1771–1783 (2013). doi:10.1002/cpe.2963
Acknowledgments
We would like to thank COMSATS Institute of Information Technology, Abbottabad, Pakistan, for their support and funding.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fayyaz, M., Aziz, K. & Mujtaba, G. Blocking probability in optical interconnects in data center networks. Photon Netw Commun 30, 204–222 (2015). https://doi.org/10.1007/s11107-015-0512-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-015-0512-4