Skip to main content
Log in

Cloud service provisioning in two types of DCN with awareness of delay and link failure probability

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Cloud service based on data center network (DCN) has become an attractive choice for various applications. Traditionally, multiple DCs are distributed at different nodes across a given optical network, and users access DCs through predefined routes (this architecture is named as Multiple Independent DCN, MI-DCN). However, as there exist transmission delay and failure probability on each link, such a network may not be a good choice for the service providers from the perspective of service reliability and cost. Therefore, we propose the idea of regrouping all the racks and distributing each rack group on a special node, where there exists a gateway (this architecture is named as Integrated Distributed DCN, ID-DCN). As each group can provide service independently, by properly grouping and routing, the whole network can work more efficiently with lower cost and higher reliability. In this paper, we study the service provision in the above two types of DCN. With the given failure probability and transmission delay on each link, we aim to minimize the total service cost and design the access routes for the demands originated from each node. To integrate the system cost, we introduce two cost scaling factors for delay and failure probability, which can be flexibly adjusted to control their relative importance (i.e., the weights). Based on mathematical approximation, a novel method is proposed to compute the failure probabilities of individual service paths. This translates our objective function into a linear expression. Then, we formulate two integer linear programs (ILP) to compare the solutions of the two scenarios. Via extensive numerical experiments, the performance of the two schemes is properly verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Banerjee, P., Bash, C., Friedrich, R., Goldsack, P., Huberman, B.A., Manley, J., Veitch, A.: Everything as a service: Powering the new information economy. Computer 44(3), 36–43 (2011)

    Article  Google Scholar 

  2. Rimal, B., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems. In: INC, IMS and IDC, pp. 44–51 (2009)

  3. Duan, Q.: Modeling and performance analysis on network virtualization for composite network-cloud service provisioning. In: SERVICES, pp. 548–555 (2011)

  4. Qu, L., Wang, Y., Orgun, M.A.: Cloud service selection based on the aggregation of user feedback and quantitative performance assessment, pp. 152–159 (2013)

  5. Chen, K., Guo, C., Wu, H., Yuan, J., Feng, Z., Chen, Y., Lu, S., Wu, W.: DAC: generic and automatic address configuration for data center networks. IEEE/ACM Trans. Netw. 20(1), 84–99 (2012)

    Article  Google Scholar 

  6. Bari, M., Boutaba, R., Esteves, R., Granville, L., Podlesny, M., Rabbani, M., Zhang, Q., Zhani, M.: Data center network virtualization: a survey. IEEE Commun. Surv. Tutor. 15(2), 909–928 (2013)

    Article  Google Scholar 

  7. Lam, C., Liu, H., Koley, B., Zhao, X., Kamalov, V., Gill, V.: Fiber optic communication technologies: what’s needed for data center network operations. IEEE Commun. Mag. 48(7), 32–39 (2010)

  8. Xiao, J., Wen, H., Wu, B., Jiang, X.H., Ho, P.-H., Zhang, L.: Joint design on DCN placement and survivable cloud service provision in all-optical mesh networks. IEEE Trans. Commun. 62(1), 235–245 (2014)

    Article  Google Scholar 

  9. Couto, R.S., Secci, S., Campista, M.E.M., Costa, L.H.M.K.: Latency versus survivability in geo-distributed data center design. In: Globecom, pp. 1107–1112 (2014)

  10. Develder, C., Buysse, J., De Leenheer, M., Jaumard, B., Dhoedt, B.: Resilient network dimensioning for optical grid/clouds using relocation. In: IEEE International Conference on Communications (ICC), pp. 6262–6267 (2012)

  11. Habib, M.F., Tornatore, M., De Leenheer, M., Dikbiyik, F., Mukherjee, B.: Design of disaster-resilient optical datacenter networks. J. Lightwave Technol. 30(16), 2563–2573 (2012)

    Article  Google Scholar 

  12. Xiao, J., Wu, B., Jiang, X.H., Pattavina, A., Wen, H.: Scalable data center network architecture with distributed placement of optical switches and racks. IEEE/OSA J. Opt. Commun. Netw. 6(3), 270–281 (2014)

    Article  Google Scholar 

  13. Szyrkowiec, T., Autenrieth, A., Gunning, P., Wright, P., Lord, A., Elbers, J., Lumb, A.: First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration. Opt. Express 22(3), 2595–2602 (2014)

    Article  Google Scholar 

  14. Yang, H., Zhang, J., Zhao, Y., Ji, Y., Wu, J., Lin, Y., Han, J., Lee, Y.: Performance evaluation of multi-stratum resources integrated resilience for software defined inter-data center interconnect. Opt. Express 23(10), 13384–13398 (2015)

    Article  Google Scholar 

  15. Yang, H., Zhang, J., Zhao, Y., Ji, Y., Wu, J., Yu, X., Han, J., Lee, Y.: Global resources integrated resilience for software defined data center interconnection based on ip over elastic optical network. IEEE Commun. Lett. 18(10), 1735–1738 (2014)

    Article  Google Scholar 

  16. Yan, S., Chen, C., Zhao, G., Lee, B.S.: Cloud service recommendation and selection for enterprises. In: Network and service management (CNSM), 2012 8th international conference and 2012 workshop on systems virtualization management (SVM), pp. 430–434 (2012)

  17. Hu, Y., Zhu, M., Xia, Y., Chen, K.: GARDEN: generic addressing and routing for data center networks. In: Cloud Computing (CLOUD), pp. 107–114 (2012)

  18. Cai, M., Liang, C., Chen, W., Su, H.: Realtime vehicle routes optimization by cloud computing in the principle of TCP/IP. In: ICSSSM, pp. 113–118 (2013)

  19. Huang, H., Zeng, D., Guo, S., Yao, H.: Joint optimization of task mapping and routing for service provisioning in distributed datacenters. In: ICC, pp. 4196–4201 (2014)

  20. Chinnu, E.A., Madheswari, A.N.: Performance optimized routing for SLA enforcement in cloud computing. In: ICGCE, pp. 689–693 (2013)

  21. Xiang, X., Lin, C., Chen, F., Chen, X.: Greening geo-distributed data centers by joint optimization of request routing and virtual machine scheduling. In: UCC, pp. 1–10 (2013)

  22. Bitar, N., Gringeri, S., Xia, T.: Technologies and protocols for data center and cloud networking. Commun. Mag. IEEE 51(9), 24–31 (2013)

    Article  Google Scholar 

  23. Yu, Y., Punihaole, T., Gerla, M., Sanadidi, M.Y.: Content routing in the vehicle cloud. In: Military Communications Conference, pp. 1–6 (2012)

  24. Larumbe, F., Sanso, B.: A Tabu search algorithm for the location of data centers and software components in green cloud computing networks. Cloud Comput. 1(1), 22–35 (2013)

    Google Scholar 

  25. Itani, W., Ghali, C., Chehab, A.: Accountable energy monitoring for green service routing in the cloud. In: ICCIT, pp. 103–108 (2013)

  26. Gattulli, M., Tornatore, M., Fiandra, R., Pattavina, A.: Low-emissions routing for cloud computing in IP-over-WDM networks with data centers. Sel. Areas Commun. IEEE J. 32(1), 28–38 (2014)

    Article  Google Scholar 

  27. Li, D., Shang, Y., Chen, C.: Software defined green data center network with exclusive routing. In: INFOCOM, pp. 1743–1751 (2014)

  28. Brandic, I.: Reducing energy consumption by using clouds. In: Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 3–4 (2013)

  29. Wu, D., Xue, Z., He, J.: iCloudAccess: cost-effective streaming of video games from the cloud with low latency. Circuits Syst. Video Technol. IEEE 24(8), 1405–1416 (2013)

    Article  Google Scholar 

  30. Wieser, S., Montessoro, P.L., Boszormenyi, L.: Efficient routing for PPETP in multimedia cloud services. In: Communications Workshops (ICC), pp. 1357–1361 (2013)

  31. Saovapakhiran, B., Devetsikiotis, M., Michailidis, G., Viniotis, Y.: Average delay SLAs in Cloud computing. In: ICC, IEEE, pp. 1302–1308 (2012)

  32. Xu, H., Li, B.: Joint request mapping and response routing for geo-distributed cloud services. In: INFOCOM, pp. 854–862 (2013)

  33. Chekuri, C., Khanna, S.: A ptas for the multiple knapsack problem. In: proceedings of the ACM-SIM Symposium on Discrete Algorithms (SODA), pp. 213–222 (2000)

  34. Wu, B., Yeung, K.L., Ho, P.-H.: ILP formulations for p-cycle design without candidate cycle enumeration. IEEE/ACM Trans. Netw. 18(1), 284–295 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Major State Basic Research Program of China (973 project No. 2013CB329301 and 2010CB327806), the Natural Science Fund of China (NSFC project No. 61372085, 61032003, 61271165 and 61202379), and the Research Fund for the Doctoral Program of Higher Education of China (RFDP project No. 20120185110025, 20120185110030 and 20120032120041). It is also supported by Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu.

Appendix proof of the theorem

Appendix proof of the theorem

Theorem

When we take the mathematic approximation in (3), it has an exact boundary which can be seen as inequation (5).

Proof

First, we list the Taylor expantion when getting Lagrange remainder term as below:

$$\begin{aligned} \hbox {e}^{x}=1+x+\hbox {e}^{\theta x}\frac{x^{2}}{2!}\ \theta \in \left( {0,1} \right) \end{aligned}$$
(22)

After moving the terms on both sides, we can have this:

$$\begin{aligned} 1-\hbox {e}^{x}=-x-\hbox {e}^{\theta x}\frac{x^{2}}{2!}\ \theta \in \left( {0,1} \right) \end{aligned}$$
(23)

Based on (23) and (23), we have:

$$\begin{aligned} \varepsilon _\mathcal{L}= & {} \mathop {\tilde{f}_\mathcal{L} } -f_\mathcal{L}\nonumber \\= & {} \frac{1}{2}\hbox {e}^{\theta \mathop \sum \limits _{\left( {u,v} \right) \in \mathcal{L}} \ln \left( {1-f_{uv} } \right) }\left[ {\mathop \sum \limits _{\left( {u,v} \right) \in \mathcal{L}} \ln \left( {1-f_{uv} } \right) } \right] ^{2} \theta \in \left( {0,1} \right) \nonumber \\ \end{aligned}$$
(24)

Moreover, because the following inequation holds:

$$\begin{aligned} \frac{-x}{1-x}\le \ln \left( {1-x} \right) \le -x \end{aligned}$$
(25)

we have:

$$\begin{aligned}&\frac{-f_{uv} }{1-f_{uv} }\le \ln \left( {1-f_{uv} } \right) \le -f_{uv} \end{aligned}$$
(26)
$$\begin{aligned}&\mathop \sum \limits _{\left( {u,v} \right) \in \mathcal{L}} \frac{-f_{uv} }{1-f_{uv} }\le \mathop \sum \limits _{\left( {u,v} \right) \in \mathcal{L}} \ln \left( {1-f_{uv} } \right) \le \mathop \sum \limits _{\left( {u,v} \right) \in \mathcal{L}} -f_{uv} \end{aligned}$$
(27)

We take \(f_\mathcal{L}^*\) to denote the maximum failure probability of all the links along \(\mathcal{L}\). \(f_\mathcal{L}^*\) can be expressed as this:

$$\begin{aligned} f_\mathcal{L}^*=\max \left\{ {f_{uv} ,\left( {u,v} \right) \in \mathcal{L}} \right\} \end{aligned}$$
(28)

Then, we have:

$$\begin{aligned} \mathop \sum \limits _{\left( {u,v} \right) \in \mathcal{L}} \frac{-f_{uv} }{1-f_\mathcal{L}^*}\le \mathop \sum \limits _{\left( {u,v} \right) \in \mathcal{L}} \ln \left( {1-f_{uv} } \right) \le \mathop \sum \limits _{\left( {u,v} \right) \in \mathcal{L}} -f_{uv} \end{aligned}$$
(29)

Assume \(r_\mathcal{L} =\mathop \sum \limits _{\left( {u,v} \right) \in \mathcal{L}} f_{uv} \), we have:

$$\begin{aligned} \frac{-1}{1-f_\mathcal{L}^*}r_\mathcal{L} \le \mathop \sum \limits _{\left( {u,v} \right) \in \mathcal{L}} \ln \left( {1-f_{uv} } \right) \le -r_\mathcal{L} \end{aligned}$$
(30)

Let \(r_{\mathcal{L}^{*}} =\mathop {\min }\limits _\mathcal{L} \left\{ {r_\mathcal{L} } \right\} \) and \(r_{\mathcal{L}^{+}} =\mathop {\max }\limits _\mathcal{L} \left\{ {r_\mathcal{L} } \right\} \), then we have:

$$\begin{aligned} \frac{-r_{\mathcal{L}^{+}} }{1-f_{\mathcal{L}^{+}}^*}\le \mathop \sum \limits _{\left( {u,v} \right) \in \mathcal{L}} \ln \left( {1-f_{uv} } \right) \le -r_{\mathcal{L}^{*}} \le 0 \end{aligned}$$
(31)

Therefore, from (24) and (31), we have:

$$\begin{aligned} \frac{1}{2}\hbox {e}^{\theta \frac{-r_{\mathcal{L}^{+}} }{1-f_{\mathcal{L}^{+}}^*}}\cdot r_{\mathcal{L}^{*}}^2 \le \varepsilon _\mathcal{L} \le -r_\mathcal{L}^*\le \frac{1}{2}\hbox {e}^{\theta r_{\mathcal{L}^{*}} }\left( {\frac{-r_{\mathcal{L}^{+}} }{1-f_{\mathcal{L}^{+}}^*}} \right) ^{2} \end{aligned}$$
(32)

Let \(\theta =1\), we can get the result as in equation (5).

This proves the theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xiao, J., Wu, B. et al. Cloud service provisioning in two types of DCN with awareness of delay and link failure probability. Photon Netw Commun 31, 217–227 (2016). https://doi.org/10.1007/s11107-015-0537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0537-8

Keywords

Navigation