Skip to main content
Log in

Data rate optimization in inter-cell interference environment of visible light communication

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper investigates the higher-order modulation using Hadamard matrix to improve the data rate performance, particularly in the interference regions of a multi-cell environment in visible light communication. It presents a novel scheme which utilizes Hadamard matrix to produce orthogonal pulses (OPs) that mitigate the inter-cell interference, and covers the interference areas of the room for mobile receivers. The minimum power requirements is examined to achieve optimum data rate in whole area of the room. Moreover, the signal-to-noise ratio is derived to provide the similar capacity distribution between cells. Theoretical analysis and simulation experiments of bit error rate (BER) and capacity performances are conducted and three arrangements of signals in cells are compared, which are defined as all cells use different sets of OPs (DSOPs), all cells use the same set of OPs (SSOPs) and reuse OPs in diagonal (ROPD) cells of the room. The results show that the BER performance of DSOPs is \(10^{-2.7}\) at the high interference area, which is the best performance compared to ROPD and SSOPs. Moreover, DSOPs requires less power to achieve 2, 3 and 4 bits/symbol compared to ROPD and SSOPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004)

    Article  Google Scholar 

  2. Mesleh, R., Elgala, H., Haas, H.: LED nonlinearity mitigation techniques in optical wireless OFDM communication systems. J. Opt. Commun. Netw. 4(11), 865–875 (2012)

    Article  Google Scholar 

  3. Abdullah, M.F.L., Bong, S.W.: Adaptive differential amplitude pulse-position modulation technique for optical wireless communication channels based on fuzzy logic. Commun. IET 8(4), 427–432 (2014)

    Article  Google Scholar 

  4. Terry, J., Gray, S.D.: Method and apparatus for higher dimensional modulation. Google Patents (2003)

  5. Zeng, L., et al.: High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE J. Sel. Areas Commun. 27(9), 1654–1662 (2009)

    Article  Google Scholar 

  6. Lee, D.-J., Cho, D.-H.: Performance analysis of channel-borrowing handoff scheme based on user mobility in CDMA cellular systems. IEEE Trans. Veh. Technol. 49(6), 2276–2285 (2000)

    Article  Google Scholar 

  7. Wang, Z., et al.: Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems. Opt. Express 20(4), 4564–4573 (2012)

    Article  Google Scholar 

  8. Guerra-Medina, M., et al.: Ethernet-OCDMA system for multi-user visible light communications. Electron. Lett. 48(4), 227–228 (2012)

    Article  Google Scholar 

  9. Wu, Z., Little, T.: Network solutions for the line-of-sight problem of new multi-user indoor free-space optical system. IET Commun. 6(5), 525–531 (2012)

    Article  Google Scholar 

  10. Chen, J., Hong, Y., Wang, Z.: Performance of precoding multi-user MIMO indoor visible light communications. In: IEEE Photonics Conference (IPC), WG4. Reston, USA (2013)

  11. Spencer, Q.H., et al.: An introduction to the multi-user MIMO downlink. IEEE Commun. Mag. 42(10), 60–67 (2004)

    Article  Google Scholar 

  12. Spencer, Q.H., Swindlehurst, A.L., Haardt, M.: Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Trans. Signal Process. 52(2), 461–471 (2004)

    Article  MathSciNet  Google Scholar 

  13. Rahaim, M., Little, T.: SINR analysis and cell zooming with constant illumination for indoor VLC networks. In: Optical Wireless Communications (IWOW), 2013 2nd International Workshop on. IEEE, Newcastle Upon Tyne (2013)

  14. Esmail, M.A., Fathallah, H.A.: Indoor Visible Light Communication Without Line of Sight: Investigation and Performance Analysis. Photonic Network Communications, pp. 1–8 (2015)

  15. Wu, L., et al.: Adaptive modulation schemes for visible light communications. J. Lightwave Technol. 33(1), 117–125 (2015)

    Article  Google Scholar 

  16. Papailiopoulos, D.S., Dimakis, A.G.: Distributed storage codes through Hadamard designs. In: Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on. IEEE (2011)

  17. Noshad, M., Brandt-Pearce, M.: Hadamard coded modulation for visible light communications. arXiv preprint arXiv:1406.2897 (2014)

  18. Uddin, M.S., et al.: Mitigation technique for receiver performance variation of multi-color channels in visible light communication. Sensors 11(6), 6131–6144 (2011)

    Article  Google Scholar 

  19. Ali, A.Y., Zhang, Z.: Received power based area estimation for indoor visible light communication. International Conference on Information and Intelligent Systems (ICIIS) (2013)

  20. Shlichta, P.: Higher-dimensional Hadamard matrices. IEEE Trans. Inf. Theory 25(5), 566–572 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang, X., Parampalli, U.: On the noncyclic property of Sylvester Hadamard matrices. IEEE Trans. Inf. Theory 56(9), 4653–4658 (2010)

    Article  MathSciNet  Google Scholar 

  22. Zwillinger, D.: Differential PPM has a higher throughput than PPM for the band-limited and average-power-limited optical channel. IEEE Trans. Inf. Theory 34(5), 1269–1273 (1988)

    Article  MathSciNet  Google Scholar 

  23. Castaneda-Trujillo, E.D., Samano-Robles, R., Gameiro, A.: Frequency-reuse planning of the down-link of distributed antenna systems with maximum-ratio-combining (MRC) receivers. Latin Am. Trans. IEEE (Revista IEEE America Latina) 10(3), 1703–1709 (2012)

    Article  Google Scholar 

  24. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC projects (61571105, 61501109, and 61223001), 863 project (No. 2013AA013601), and Jiangsu NSF project (No. BK20140646).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaichen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.Y., Zhang, Z., Abdelgader, A.M.S. et al. Data rate optimization in inter-cell interference environment of visible light communication. Photon Netw Commun 32, 133–141 (2016). https://doi.org/10.1007/s11107-015-0585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0585-0

Keywords

Navigation