Skip to main content
Log in

Nonlinear pulse shaping-assisted ultrashort optical pulse generation

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

An ultrashort optical pulse generator based on nonlinear pulse shaping is proposed and demonstrated. With a spatial light modulator placed prior to a high nonlinearity fiber, \((\mu +\lambda )\)-evolution strategy is introduced to dynamically adjust the transfer function of spatial light modulator both in phase and in amplitude. Nearly chirp-free 2.2-ps optical Gaussian pulse and 0.73-ps optical Nyquist pulse with a repetition rate of 25 GHz are both achieved in simulation. The scheme also has a certain tolerance to phase quantization error of the spatial light modulator and power fluctuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pan, S., Lou, C., Gao, Y.: Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter. Opt. Express 14(3), 1113–1118 (2006)

    Article  Google Scholar 

  2. Aschwanden, A., Lorenser, D., Unold, H.J., Paschotta, R., Gini, E., Keller, U.: 2.1-W picosecond passively mode-locked external-cavity semiconductor laser. Opt. Lett. 30(3), 272–274 (2005)

    Article  Google Scholar 

  3. Tamura, K., Doerr, C.R., Nelson, L.E., Haus, H.A., Ippen, E.P.: Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser. Opt. Lett. 19(1), 46–48 (1994)

    Article  Google Scholar 

  4. Lasri, J., Devgan, P., Tang, R., Kumar, P.: Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10 GHz or higher) optical pulses. Opt. Express 11(12), 1430–1435 (2003)

    Article  Google Scholar 

  5. Hu, H., Mulvad, H.C.H., Peucheret, C., Galili, M., Clausen, A., Jeppesen, P., Oxenløwe, L.K.: 10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation. Opt. Express 19(26), B343–B349 (2011)

    Article  Google Scholar 

  6. Morohashi, I., Sakamoto, T., Sotobayashi, H., Kawanishi, T., Hosako, I., Tsuchiya, M.: Widely repetition-tunable 200fs pulse source using a Mach-Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber. Opt. Lett. 33(11), 1192–1194 (2008)

    Article  Google Scholar 

  7. Li, J., Berntson, A.: Subpicosecond 40 GHz pulse generation using simultaneous two-arm modulation of a Mach-Zehnder intensity modulator. In: Proceedings of the European Conference on Optical Communications, pp. 1–2 (2008)

  8. Hirooka, T., Ruan, P., Guan, P., Nakazawa, M.: Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km. Opt. Express 20(14), 15001–15007 (2012)

    Article  Google Scholar 

  9. Schmogrow, R., Meyer, M., Schindler, P.C., Josten, A., Ben-Ezra, S., Koos, C., Freude, W., Leuthold, J.: 252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33. In: Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2013), paper OTu2I. 1

  10. Soto, M.A., Alem, M., Shoaie, M.A., Vedadi, A., Brès, C.S., Thévenaz, L., Schneider, T.: Optical sinc-shaped Nyquist pulses of exceptional quality. Nat. Commun. 4, 2898 (2013)

    Article  Google Scholar 

  11. Wang, Q., Huo, L., Xing, Y., Lou, C., Zhou, B.: Cost-effective optical nyquist pulse generator with ultra-flat optical spectrum using dual-parallel Mach-Zehnder Modulators. In: Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2014), paper W1G. 5

  12. Wang, D., Huo, L., Xing, Y., Jiang, X., Lou, C.: Optical Nyquist pulse generation using a time lens with spectral slicing. Opt. Express 23(4), 4329–4339 (2015)

    Article  Google Scholar 

  13. Nakazawa, M., Hirooka, T., Ruan, P., Guan, P.: Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train. Opt. Express 20(2), 1129–1140 (2012)

    Article  Google Scholar 

  14. Harako, K., Seya, D., Hirooka, T., Nakazawa, M.: 640 Gbaud (1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance. Opt. Express 21(18), 21062–21075 (2013)

    Article  Google Scholar 

  15. Tan, H.N., Tanizawa, K., Inoue, T., Kurosu, T., Namiki, S.: No guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add-drop nod. Opt. Lett. 38(17), 3287–3290 (2013)

    Article  Google Scholar 

  16. Yang, X., Richardson, D.J., Petropoulos, P.: Broadband, flat frequency comb generated using pulse shaping-assisted nonlinear spectral broadening. Photon. Technol. Lett. 25(6), 543–545 (2013)

    Article  Google Scholar 

  17. Yang, X., Richardson, D.J., Petropoulos, P.: Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping. J. Lightw. Technol. 30(12), 1971–1977 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by “973” Major State Basic Research Development Program of China (No. 2011CB301703), the National Natural Science Foundation of China (No. 61275032) and Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Huo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Yu, W., Huo, L. et al. Nonlinear pulse shaping-assisted ultrashort optical pulse generation. Photon Netw Commun 32, 213–217 (2016). https://doi.org/10.1007/s11107-015-0599-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0599-7

Keywords

Navigation