Abstract
The use of genetic algorithm (GA) to simplify the structures of artificial neural network-based modulation format identification is proposed in next-generation dynamic and heterogeneous fiber-optic networks. Simulation results show that with 80 asynchronous amplitude histogram bins, by virtue of GA, the identification error rate decreases from 4.24 to 1.04 %.







Similar content being viewed by others
References
Pan, Z., Yu, C., Willner, A.E.: Optical performance monitoring for the next generation optical communication networks. Opt. Fiber Technol. 16(1), 20–45 (2010)
Monroy, I.T., Zibar, D., Gonzalez, N.G., Borkowski, R.: Cognitive heterogeneous reconfigurable optical networks (CHRON): enabling technologies and techniques. In: Proceedings of the ICTON (2011), paper Th.A1.2
Nag, A., Tornatore, M., Mukherjee, B.: Optical network design with mixed line rates and multiple modulation formats. J. Lightwave Technol. 28(4), 466–475 (2010)
Chung, Y.C.: Optical performance monitoring techniques; current status and future challenges. In: Proceedings of the ECOC (2008), paper We.1.D.1
Kilper, D.C., Bach, R., Blumenthal, D.J., Einstein, D., Landolsi, T., Ostar, L., Preiss, M., Willner, A.E.: Optical performance monitoring. J. Lightwave Technol. 22(1), 294–304 (2004)
Saleh, A., Simmons, J.M.: Evolution toward the next-generation core optical network. J. Lightwave Technol. 24(9), 3303–3321 (2006)
Liu, J., Dong, Z., Zhong, K., Lau, A.P.T., Lu, C., Lu, Y.: Modulation format identification based on received signal power distributions for digital coherent receivers. In: Proceedings of the OFC (2014), Th4D.3
Khan, F.N., Zhou, Y., Sui, Q., Lau, A.P.T.: Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks. Opt. Fiber Technol. 20(2), 68–74 (2014)
Borkowski, R., Zibar, D., Caballero, A., Arlunno, V., Monroy, I.T.: Stokes space-based optical modulation format recognition for digital coherent receivers. IEEE Photonics Lett. 25(21), 2129–2132 (2013)
Khan, F.N., Zhou, Y., Lau, A.P.T., Lu, C.: Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks. Opt. Express 20(11), 12422–12431 (2012)
Khan, F.N., Shen, T.S.R., Zhou, Y., Lau, A.P.T., Lu, C.: Optical performance monitoring using artificial neural networks trained with empirical moments of asynchronously sampled signal amplitudes. IEEE Photonics Technol. Lett. 24(12), 982–984 (2012)
Wu, X., Jargon, J.A., Skoog, R.A., Paraschis, L., Willner, A.E.: Applications of artificial neural networks in optical performance monitoring. J. Lightwave Technol. 27(16), 3580–3589 (2009)
Hassoun, M.H.: Fundamentals of Artificial Neural Networks. MIT Press, Cambridge (1995)
Zhang, Q.J., Gupta, K.C.: Neural Networks for RF and Microwave Design. Artech, Boston (2000)
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)
Aouiti, C., Alimi, A.M., Karray, F., Maalej, A.: A hierarchical genetic algorithm for the design of the beta basis function neural network. In: Proceedings of the 2002 International Joint Conference on Neural Networks, pp. 1246–1251 (2002)
Ling, S.H., Lam, H.K., Leung, F.H.F., Tam, P.K.S.: A novel GA-based neural network for short-term load forecasting. In: Proceedings of the 2002 International Joint Conference on Neural Networks, pp. 2761–2766 (2002)
Hanik, N., Gladisch, A., Caspar, C., Strebel, B.: Application of amplitude histograms to monitor performance of optical channels. Electron. Lett. 35(5), 403–404 (1999)
Kozicki, B., Takuya, O., Hidehiko, T.: Optical performance monitoring of phase-modulated signals using asynchronous amplitude histogram analysis. J. Lightwave Technol. 26(10), 1353–1361 (2008)
Venkatesan, D., Kannan, K., Saravanan, R.: A genetic algorithm-based artificial neural network model for the optimization of machining processes. J. Neural Comput. Appl. 18(2), 135–140 (2009)
Acknowledgments
The authors would like to acknowledge the support of National Natural Science Foundation of China (NSFC) under Grant Nos. (61307092, 61435006), New Century Excellent Talents in University (NCET-12-0679), National High Technology 863 Research and Development Program of China (No. 2013AA013300).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, S., Peng, Y., Sui, Q. et al. Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks and genetic algorithms. Photon Netw Commun 32, 246–252 (2016). https://doi.org/10.1007/s11107-016-0606-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-016-0606-7