Skip to main content
Log in

Complexity reduction of equalization/pre-emphasis using set membership filtering for NG LR-PON

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Coherent receivers, with advanced and low-complexity digital signal processing (DSP), have the advantage of increasing the loss/power budget of next generation-long-reach passive optical networks (NG-LRPONs). This reduces the network capital expenditures by eliminating or reducing the number of amplifiers to be installed between the optical line terminal (OLT) and the optical network units (ONUs). In this paper, we investigate the complexity and convergence speed of two adaptive equalization and/or pre-emphasis strategies for mitigating chromatic and polarization mode dispersions (CD and PMD) in NG-LRPON. We first identify two potential deployment strategies of equalization and/or pre-emphasis. The first equally splits the signal processing in the OLT and ONU; however, the second concentrates most of DSP in the OLT trying to reduce the cost and alleviate the complexity of ONUs. Our investigation shows that the second strategy achieves 50 % faster convergence rate in terms of number of symbols for 16QAM/5 Gbaud. Moreover, we apply the enhanced set membership filtering (SMF) technique, recently introduced for next generation wireless communications, to our LR-PON in order to reduce the update rate of equalizers’ taps, hence reduce the calculation complexity of the OLT and ONUs. Our results show that by employing SMF technique a substantial reduction in the number of mathematical operations needed to attain convergence is achieved. Simulation results reveal that our proposed SMF can reduce the equalizers’ update rate, hence calculation complexity, by 55 % for 16QAM and 75 % for QPSK with marginal degradation of the BER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Winzer, P.: Beyond 100G ethernet. IEEE Commun. Mag. 48, 26–30 (2010)

    Article  Google Scholar 

  2. Ragheb, A., Fathallah, H.: Candidate modulation schemes for next generation-passive optical networks (NG-PONs). In: 9th International Conference on High Capacity Optical Networks and Enabling Technologies (HONET), 2012, pp. 226–231 (2012)

  3. Lavery, D., Maher, R., Millar, D.S., Thomsen, B.C., Bayvel, P., Savory, S.J.: Digital coherent receivers for long-reach optical access networks. J. Lightwave Technol. 31, 609–620 (2013)

    Article  Google Scholar 

  4. Lavery, D., Torrengo, E., Savory, S.: Bidirectional 10 Gbit/s long-reach WDM-PON using digital coherent receivers. In: Optical Fiber Communication Conference, p. OTuB4 (2011)

  5. Jung, S.P., Takushima, Y., Chung, Y.C.: Generation of 5-Gbps QPSK signal using directly modulated RSOA for 100-km coherent WDM PON. In: Optical Fiber Communication Conference, p. OTuB3 (2011)

  6. Hsu, D.-Z., Wei, C.-C., Chen, H.Y., Chen, J., Yuang, M., Lin, S.-H., Li, W.-Y.: 2.1-Tb/s\(\times \)km OFDM long-reach PON transmission using a cost-effective electro-absorption modulator. In: Optical Fiber Communication Conference, p. OMG2 (2011)

  7. Ragheb, A., Fathallah, H.: Performance analysis of next generation-PON (NG-PON) architectures. J. Lightwave Technol. 2011, 339–345 (2011)

    Google Scholar 

  8. Van de Voorde, I., Martin, C., Vandewege, J., Oiu, X.: The superPON demonstrator: an exploration of possible evolution paths for optical access networks. IEEE Commun. Mag. 38, 74–82 (2000)

    Article  Google Scholar 

  9. Talli, G., Townsend, P.D.: Hybrid DWDM-TDM long-reach PON for next-generation optical access. J. Lightwave Technol. 24, 2827 (2006)

    Article  Google Scholar 

  10. Davey, R.P., Grossman, B., Rasztovits-Wiech, M., Payne, D.B., Nesset, D., Kelly, A., Rafel, A., Appathurai, S., Yang, S.-H.: Long-reach passive optical networks. J. Lightwave Technol. 27, 273 (2009)

    Article  Google Scholar 

  11. Ossieur, P., Antony, C., Clarke, A.M., Naughton, A., Krimmel, H.-G., Chang, Y.F., Ford, C., Borghesani, A., Moodie, D., Poustie, A.: A 135-km 8192-split carrier distributed DWDM-TDMA PON with 2 \(\times \) 32 \(\times \) 10 Gb/s capacity. J. Lightwave Technol. 29, 463–474 (2011)

    Article  Google Scholar 

  12. Ossieur, P., Antony, C., Naughton, A., Clarke, A.M., Krimmel, H.-G., Yin, X., Qiu, X.-Z., Ford, C., Borghesani, A., Moodie, D.: Demonstration of a 32 \(\times \) 512 split, 100 km reach, 2 \(\times ~\) 32 \(\times \) 10 Gb/s hybrid DWDM-TDMA PON using tunable external cavity lasers in the ONUs. J. Lightwave Technol. 29, 3705–3718 (2011)

    Article  Google Scholar 

  13. Rohde, H., Smolorz, S., Gottwald, E., Kloppe, K.: Next generation optical access: 1 Gbit/s for everyone. In: Proceedings of European Conference on Optical Communication, paper 10.5.5, 2009 (2009)

  14. Smolorz, S., Rohde, H., Gottwald, E., Smith, D.W. , Poustie, A.: Demonstration of a coherent UDWDM-PON with real-time processing. In In Proceedings of Optical Fiber Communication Conference, paper PDPD4, 2011, p. PDPD4 (2011)

  15. Narikawa, S., Sanjoh, H., Sakurai, N., Kumozaki, K., Imai, T.: Coherent WDM-PON using directly modulated local laser for simple heterodyne transceiver. In: Proceedings of European Conference on Optical Communication, paper We3.3.2, 2005 (2005)

  16. Taylor, M.G.: Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments. IEEE Photonics Technol. Lett. 16, 674–676 (2004)

    Article  Google Scholar 

  17. Winters, J.H.: Equalization in coherent lightwave systems using microwave waveguides. J. Lightwave Technol. 7, 813–815 (1989)

    Article  Google Scholar 

  18. Rha, H.Y., Youn, C.J., Jeon, B.G., Choi, H.-W.: Efficient chromatic dispersion precompensation for coherent optical OFDM. IEEE Photonics Technol. Lett. 27, 30–33 (2015)

    Article  Google Scholar 

  19. Geisler, D.J., Fontaine, N.K., Scott, R.P., He, T., Heritage, J.P., Yoo, S.: Single channel, 200 Gb/s, chromatic dispersion precompensated 100 km transmission using an optical arbitrary waveform generation based optical transmitter. In: Optical Fiber Communication Conference, p. OWO4 (2010)

  20. Geisler, D.J., Fontaine, N.K., Scott, R.P., Heritage, J.P., Okamoto, K., Yoo, S.J.B.: 360-Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation. IEEE Photonics Technol. Lett. 21, 489–491 (2009)

    Article  Google Scholar 

  21. Yao-Jun, Q., Xue-Jun, L., Yue-Feng, J.: Joint nonlinearity and chromatic dispersion pre-compensation for coherent optical orthogonal frequency-division multiplexing systems. Chin. Phys. B 20, 114212 (2011)

    Article  Google Scholar 

  22. Savory, S.J.: Digital coherent optical receivers: algorithms and subsystems. IEEE J. Sel. Top. Quantum Electron. 16, 1164–1179 (2010)

    Article  Google Scholar 

  23. Ip, E.M., Kahn, J.M.: Fiber impairment compensation using coherent detection and digital signal processing. J. Lightwave Technol. 28, 502–519 (2010)

    Article  Google Scholar 

  24. Selmi, M., Gosset, C., Noelle, M., Ciblat, P., Jaouën, Y.: Block-wise digital signal processing for PolMux QAM/PSK optical coherent systems. J. Lightwave Technol. 29, 3070–3082 (2011)

    Article  Google Scholar 

  25. Fatadin, I., Ives, D., Savory, S.J.: Blind equalization and carrier phase recovery in a 16-QAM optical coherent system. J. Lightwave Technol. 27, 3042–3049 (2009)

    Article  Google Scholar 

  26. Godard, D.N.: Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Commun. 28, 1867–1875 (1980)

    Article  Google Scholar 

  27. Chen, Y., Le-Ngoc, T., Champagne, B., Xu, C.: Recursive least squares constant modulus algorithm for blind adaptive array. IEEE Trans. Signal Process. 52, 1452–1456 (2004)

    Article  MathSciNet  Google Scholar 

  28. Hayes, M.H.: Statistical Digital Signal Processing and Modeling. Wiley, London (2009)

    Google Scholar 

  29. Haykin, S.S.: Adaptive Filter Theory. Pearson Education, India (2008)

    MATH  Google Scholar 

  30. Goldfarb, G., Li, G.: Chromatic dispersion compensation using digital IIR filtering with coherent detection. IEEE Photonics Technol. Lett. 19, 969–971 (2007)

    Article  Google Scholar 

  31. Savory, S.J.: Digital filters for coherent optical receivers. IEEE Photonics Technol. Lett. 16, 804–817 (2008)

    Google Scholar 

  32. Munir, J., Mezghani, A., Slim, I., Nossek, J.: Chromatic dispersion compensation using complex-valued all-pass filter. In: IEEE Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), pp. 396–400 (2014)

  33. Lucena, M., Apolinário, J.A., Shoaib, M.: The inverse QRD set-membership RLS algorithm. In: Proceedings of the 21st European Signal Processing Conference (EUSIPCO), pp. 1–5 (2013)

  34. De Lamare, R.C., Diniz, P.S.: Set-membership adaptive algorithms based on time-varying error bounds for CDMA interference suppression. IEEE Trans. Veh. Technol. 58, 644–654 (2009)

    Article  Google Scholar 

  35. Arablouei, R., Doğançay, K.: Set-membership recursive least-squares adaptive filtering algorithm. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3765–3768 (2012)

Download references

Acknowledgments

The authors acknowledge KACST-Technology Innovation Centre in RF and Photonics (RFTONICS) and Prince Sultan Advanced Technologies Research Institute (PSATRI) for accessing their facilities, and the support of Electrical Engineering Department, King Saud University, Saudi Arabia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Ragheb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragheb, A., Fathallah, H., Bentrcia, A. et al. Complexity reduction of equalization/pre-emphasis using set membership filtering for NG LR-PON. Photon Netw Commun 33, 166–178 (2017). https://doi.org/10.1007/s11107-016-0631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0631-6

Keywords

Navigation