Abstract
In this paper, we demonstrate new dissimilar refractive index profiles for highly nonlinear ultra-flattened dispersion fibers with noteworthy effective area \((A_\mathrm{eff})\) for future optical signal processing. The newly proposed fibers named from Type 1 to Type 5 have a flattened dispersion over S, C, L and U bands. Predominantly, few-mode HNL-UFF fiber of Type 3 yields dispersion-flattened characteristics over a range of 250 nm of optical communication spectrum with a mere 0.2 ps/nm km variation in dispersion and a dispersion slope of \(0.0057\hbox { ps}/\hbox {nm}^{2}\) km due to the contribution of higher-order modes to the dispersion characteristics of the fiber. Moreover, it has a moderate nonlinear coefficient of \(8.03\hbox { W}^{-1}\,\hbox {km}^{-1}\). By modifying the refractive index profile of Type 3 fiber, Type 4 and Type 5 fibers are obtained in order to ensure single-mode operation, while the zero flattened dispersion characteristics of the fiber are compromised. Among the newly proposed fibers, Type 4 fiber offers a very low ITU-T cutoff wavelength of \(1.33~\upmu \hbox {m}\), whereas in the case of Type 5 fiber it is \(1.38~\upmu \hbox {m}\). Moreover, Type 4 and Type 5 fibers have good nonlinear coefficients of \(12.26\hbox { W}^{-1}\,\hbox {km}^{-1}\) and \(11.45\hbox { W}^{-1}\,\hbox {km}^{-1}\), respectively. By virtue of the proposed optimized index profile, an insensitive behavior toward bending is displayed by Type 3, Type 4 and Type 5 fibers. In addition, Type 4 fiber provides a better splice loss of 0.25 dB.

















Similar content being viewed by others
References
High nonlinear fiber, rayscience optoelectronic innovation. www.oelabs.com/imagesd/goodspdf/201109/High%20Nonlinear%20Optical%20Fibre.dpdf
Selvendran, S., Sivanantharaja, A., Kalaiselvi, K., Esakkimuthu, K.: Simultaneous four channel wavelength conversion of 50 Gbps CSRZ-DPSK WDM signals in S and C bands using HNLF without additional pump signals. Opt. Quantum Electron. (2012). doi:10.1007/s11082-012-9612-x
Verdurmen, E.J.M., Khoe, G.D., Koonen, A.M.J., de Waardt, H.: Comparison of multiplexing techniques using XPM and FWM in HNLF. In: Proceedings of the IEEE/LEOS Benelux Chapter, pp. 185–188. Mons, Belgium (2005)
Feng, X., Shi, J., Ponzo, G. M., Poletti, F., Petrovich, M. N.,White, N. M., Petropoulos, P., Ibsen, M., Loh, W. H., Richardson,D.J.: Fusion-spliced highly nonlinear soft-glass W-type index profiled fiber with ultra-flattened, low dispersion profile in \(1.55 \mu \text{m}\) telecommunication window. In: ECOC, paper We.10.P1.05 (Geneva, 2011)
Li, M.-J., Li, S., Nolan, D.A.: Silica glass based nonlinear optical fibers. In: Proceedings of SPIE 6025, ICO20: Optical Communication, 602503 (28 Jan 2006). doi:10.1117/12.666983
Hiroishi, J., Sugizaki, R., Aso, O., Tadakuma, M., Shibuta, T.: Development of highly nonlinear fibers for optical signal processing. Furukawa Rev. 23, 21–25 (2003)
Oh, K., Paek, U.-C.: Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards, p. 96. Wiley, Hoboken (2012)
Beck, B., Yangtze Optical Fibre And Cable Co. Ltd.: Application-specific optical fibers are cost-effective. Photonics Spectra. 39(12), 23656 (2005). http://www.photonics.com/Article.aspx?AID=23656
Weber, H.G.: Ultrahigh-Speed Optical Transmission Technology. Springer, Berlin (2007). (edition)
Okuno, T., Hirano, M., Nakanishi, T., Onishi, M.: Highly-nonlinear optical fibers and their applications. SEI Tech. Rev. 62, 34–40 (2006). http://www.sei.co.jp/tr_e/pdf/info/62-06.pdf
Makouei, S., KoozehKanani, Z.D.: Zero-dispersion shifted optical fiber design based on ga and cd optimization methods. Progress Electromagn. Res. M 26, 115–126 (2012)
Wei, C., Zhu, X., Norwood, R.A., Song, F., Peyghambarian, N.: Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 \(\mu \)m. Opt. Express 21(24), 29488–29504 (2013)
Chamberlain, G.E., Day, G.W., Franzen, D.L., Gallawa, R.L., Kim, E.M., Young, M.: Optical Fiber Characterization: Attenuation, Frequency Domain Bandwidth, and Radiation Patterns. U.S. Department of Commerce, National Bureau of Standards, p. 225 (1983)
Carnevale, A., Paek, U.-C., Peterson, G.E.: Single Mode Fiber with Graded Index of Refraction. U.S Patent 4,412,722, 1 Nov 1983
Ma, D., Smith, D.K.: Positive Dispersion Low Dispersion Slope Fiber, United States Patent. Pub. No.: US 2001/0001624 A1, 24 May 2001
Kim, J.-K.: Investigation of High-Nonlinearity Glass Fibers for Potential Applications in Ultrafast Nonlinear Fiber Devices. Ph.D. thesis (Virginia Polytechnic Institute and State University, Blacksburg, VA.). http://en.scientificcommons.org/1530271 (2005)
Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, Cambridge (2007). (Fourth Edition)
Bachmann, Peter: Review of plasma deposition applications: preparation of optical wave guides. Pure Appl. Chem. 57(9), 1299–1310 (1985)
IGIC, Inc.: Staff, Optical Fibers and Applications, Issue 1, Information Gatekeepers Inc, 01. p. 88 (1994)
Lydtin, H.: PCVD: a technique suitable for large-scale fabrication of optical fibers. J. Light. Technol. 8, 1034–1038 (1986)
Cognolat, L.: Chemical vapour deposition for optical fibre technology. J. Phys. IV 5(C5), C5-975–C5-987 (1995). doi:10.1051/jphyscol:19955115
Schuster, K., Unger, S., Aichele, C., Lindner, F.: Grimm, Stephan, Litzkendorf, Doris, Kobelke, Jens, Bierlich, Jörg, Wondraczek, Katrin, Bartelt, Hartmut: Material and technology trends in fiber optics. Adv. Opt. Technol. 3(4), 447–468 (2014)
Yin, S., Chung, K.-W., Liu, H., Kurtz, P., Reichard, K.: A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100 mm2 and low bending and splice loss. Opt. Commun. 177, 225–232 (2000)
Bachmann, P.K., Leers, D., Wehr, H., Wiechert, D.U., Van Steenwijk, J.A., Tjaden, D.L.A.: Dispersion-flattened single-mode fibers prepared with PCVD: performance, limitations, design optimization. J. Light. Technol. Lt–4(7), 858–863 (1986)
Myslivets, E., Radic, S.: Spatially resolved measurements of the chromatic dispersion in fibers. J. Light. Technol. 33(3), 597–608 (2015)
Ramachandran, S.: Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices. J. Light. Technol. 23(11), 3426–3443 (2005)
Feng, X., Poletti, F., Camerlingo, A., Parmigiani, F., Petropoulos, P., Horak, P., Ponzo, G.M., Petrovich, M., Shi, J., Loh, W.H., Richardson, D.J.: Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths. Opt. Fiber Technol. 16(6), 378–391 (2010)
Feng, X., Shi, J., Ponzo, G.M., Poletti, F., Petrovich, M.N., White, N.M. , Petropoulos, P., Ibsen, M., Loh, W.H., Richardson, D.J.: Fusion-spliced highly nonlinear soft-glass W-type index profiled fibre with ultra-flattened, low dispersion profile in 1.55\(\mu \)m telecommunication window. In: European Conference and Exposition on Optical Communications Geneva Switzerland, 18-22 Sept 2011
Shashi, K., Sahu, H.R., Arora, A.: Enhanced bend insensitive high effective area NZDS fiber. In: International Wire and Cable Symposium, Proceedings of the 55th IWCS/Focus
Bruyère, F.: Effets de polarisationdans les systèmes à amplification optique de longuedistance. Ph.D. dissertation, University of Paris XI Orsay (1994)
Miller, S.E., Kaminow, I.P. (eds.): Optical Fiber Telecommunications II. Academic Press Inc, San Diego (1988)
Sakai, J., Kimura, T.: Bending loss of propagation modes in arbitrary-index profile optical fibers. Appl. Opt. 17(10), 1499–1506 (1978)
Ramachandran, S., Ghalmi, S., Nicholson, J.W., Yan, M.F., Wisk, P., Monberg, E., Dimarcello, F.V.: Anomalous dispersion in a solid, silica-based fiber. Opt. Lett. 31(17), 2532–2534 (2006)
Acknowledgments
The authors thankfully acknowledge the Department of Science and Technology (DST), New Delhi, for their Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (FIST) grant through the order No. SR/FST/College-061/2011(C) to procure the Optiwave suite Simulation tools.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Selvendran, S., Raja, A.S. New refractive index profiles of dispersion-flattened highly nonlinear fibers for future all-optical signal processing in wdm optical networks. Photon Netw Commun 33, 217–230 (2017). https://doi.org/10.1007/s11107-016-0635-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-016-0635-2