Abstract
The servitization of network resources leads to new challenges for optical networks. For instance, to provide on-demand lightpaths as a service while keeping the probability of packet loss (PPL) low, issues such as lightpath setting up, resource reservation and load balancing must be addressed. We present a self-adaptive framework to process lightpath requests on packet switching optical networks that considers and handles the aforementioned issues. The framework is composed of a dimensioning phase that adds up new resources to an initial topology and a learning phase based on reinforcement learning that provides self-adaptation to tolerate traffic changes. The framework is tested on three realistic mesh topologies achieving a PPL between \(1 \times 10^{-1}\) and \(1 \times 10^{-6}\) for different traffic loads. Compared to fixed multi-path routing strategies, our framework reduces PPL between \(19\%\) and up to \(80\%\). Furthermore, no packet loss can also be achieved for traffic loads equal to or lower than 0.4.













Similar content being viewed by others
References
Ammar, H., Tuyls, K., Kaisers, M.: Evolutionary Dynamics of Ant Colony Optimization. Multiagent System Technologies. Springer, Berlin (2012)
Aziz, K., Sarwar, S., Aleksic, S.: Dimensioning an optical packet-burst switch: more interconnections or more delay lines. In: International Conference on Optical Network Design and Modeling. 1–6 (2008)
Bloembergen, D., Tuyls, K., Hennes, D., Kaisers, M.: Evolutionary dynamics of multi-agent learning: a survey. J. Artif. Intell. Res. 53, 659–697 (2015)
Bootstrap percentile method. Online. http://mathworks.com/help/stats/prctile.html (2016). Accessed 02 Oct 2016
Callegati, F., Cerroni, W., Raffaelli, C.: Routing techniques in optical packet-switched networks. In: 7th International Conference on Transparent Optical Networks 1, 175 – 178 (2005)
Callegati, F., Cerroni, W., Raffaelli, C., Savi, M.: QoS differentiation in optical packet-switched networks. Comput. Commun. 29(7), 855–864 (2006). doi:10.1016/j.comcom.2005.08.007
Callegati, F., Campi, A., Cerroni, W.: Automated transport service management in the future internet: concepts and operations. J. Internet Serv. Appl. 2, 69–79 (2011). doi:10.1007/s13174-011-0026-y
Callegati, F., Cerroni, W., Campi, A.: Application scenarios for cognitive transport service in next-generation networks. Commun. Mag. 50(3), 62–69 (2012)
Xy, C., Zhang, P., Zr, Z., Yq, H., Zb, L.: Fast light-path set-up protocol for optical flow switching. Optoelectron. Lett. 5(5), 368–371 (2009). doi:10.1007/s11801-009-9106-7
Castañón, G., Tancevski, L., Tamil, L.: Optical packet switching with multiple path routing. J. Comput. Netw. ISDN Syst. Spec. Issue Opt. Netw. New Gener. Internet Data Commun. Syst. 32, 653–662 (2000)
Contreras, L., Lopez, V., De Dios, O., Tovar, A., Munoz, F., Azanon, A., Fernandez-Palacios, J., Folgueira, J.: Toward cloud-ready transport networks. IEEE Commun. Mag. 50(9), 48–55 (2012). doi:10.1109/MCOM.2012.6295711
De Leenheer, M., Thysebaert, P., Volckaert, B., De Turck, F., Dhoedt, B., Demeester, P., Simeonidou, D., Nejabati, R., Zervas, G., Klonidis, D., O’Mahony, M.J.: A view on enabling-consumer oriented grids through optical burst switching. Commun. Mag. 44(3), 124–131 (2006)
Gazi, B., Ghassemlooy, Z.: Dynamic buffer management using per-queue thresholds: Research articles. Int. J. Commun. Syst. 20, 571–587, (2007). doi:10.1002/dac.v20:5. http://portal.acm.org/citation.cfm?id=1238861.1238865
Kiran, Y.V., Venkatesh, T., Murthy, C.S.R.: A reinforcement learning framework for path selection and wavelength selection in optical burst switched networks. IEEE J. Sel. Areas Commun. 25, 18–26 (2007)
Klinkowski, M.: An evolutionary algorithm approach for dedicated path protection problem in elastic optical networks. Cybern. Syst. 44(6–7), 589–605 (2013)
Laor, M., Gendel, L.: The effect of packet reordering in a backbone link on application throughput. IEEE Netw. 16(5), 28–36 (2002). doi:10.1109/MNET.2002.1035115
Li, M., Cao, X., Xu, L., Zhang, P., Yuan, C., Peng, S., Li, Z.: A distributed fast light-path set-up protocol for grid over obs networks. In: Network and Parallel Computing, 2008. NPC 2008. IFIP International Conference on, pp 375–382, (2008). doi:10.1109/NPC.2008.25
Pavani, G., Queiroz, A., Pellegrini, J.: Analysis of ant colony optimization-based routing in optical networks in the presence of byzantine failures. Inf. Sci. 340(C), 27–40 (2016). doi:10.1016/j.ins.2016.01.008
Pavon-Marino, P., Izquierdo-Zaragoza, J.: Lightpath bundling and anycast switching: a new paradigm for multilayer optical networks. IEEE Commun. Mag. 50(8), 89–95 (2012). doi:10.1109/MCOM.2012.6257532
Piratla, N.M., Jayasumana, A.P.: Metrics for packet reordering-a comparative analysis. Int. J. Commun. Syst. 21(1), 99–113 (2008). doi:10.1002/dac.v21:1
Razo-Zapata, I., Castanon, G., Mex-Perera, C.: Lightpath requests processing in flexible packet switching optical networks using reinforcement learning. In: Transparent Optical Networks (ICTON), 2013 15th International Conference on, pp 1–4, (2013). doi:10.1109/ICTON.2013.6602872
Razo-Zapata, I., Castañón, G., Mex-Perera, C.: Self-healing in transparent optical packet switching mesh networks: A reinforcement learning perspective. Comput. Netw. 60(0), 129 – 146, (2014). doi:10.1016/j.bjp.2013.11.002. http://www.sciencedirect.com/science/article/pii/S1389128613003733
Simeonidou, D., Nejabati, R., Zervas, G., Klonidis, D., Tzanakaki, A., O’Mahony, M.: Dynamic optical-network architectures and technologies for existing and emerging grid services. J. Lightwave Technol. 23(10), 3347–3357 (2005)
Sterbenz, J.P., Hutchison, D., Cetinkaya, E.K., Jabbar, A., Rohrer, J.P., Scholler, M., Smith, P.: Resilience and survivability in communication networks: strategies, principles, and survey of disciplines. Comput. Netw. 54(8), 1245–1265 (2010). doi:10.1016/j.comnet.2010.03.005. (Resilient and Survivable networks)
Sutton, R.S., Barto, A.G.: Reinforcement Learning. An Introduction. The MIT Press, Cambridge (1998)
Tan, C., Castañón, G., Chien, S., You, A., Low, A.: Buffering management schemes for optical variable length packets under limited packet sorting. Photon Netw. Commun. 12(3), 257–268 (2006). doi:10.1007/s11107-006-0029-y
Youngseok, L., Mukherjee, B.: Traffic engineering in next-generation optical networks. IEEE Commun. Surv. Tutor. 6(3), 16–33 (2004). doi:10.1109/COMST.2004.5342291
Yuang, M., Lee, S., Tien, P.L., Lin, Y.M., Shih, J., Tsai, F., Chen, A.: Optical coarse packet-switched ip-over-wdm network (opsinet): technologies and experiments. IEEE J. Sel. Areas Commun. 24(8), 117–127 (2006). doi:10.1109/JSAC.2006.1677259
Zervas, G., Martini, V., Qin, Y., Escalona, E., Nejabati, R., Simeonidou, D., Baroncelli, F., Martini, B., Torkmen, K., Castoldi, P.: Service-oriented multigranular optical network architecture for clouds. IEEE/OSA J. Opt. Commun. Netw 2(10), 883–891 (2010)
Zhu, Z., Lu, W., Zhang, L., Ansari, N.: Dynamic service provisioning in elastic optical network with hybrid single-multi-path routing. J. Lightwave Technol. 31(1), 15–22 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Razo-Zapata, I.S., Castañón, G. & Mex-Perera, C. Providing traffic tolerance in optical packet switching networks: a reinforcement learning approach. Photon Netw Commun 34, 307–322 (2017). https://doi.org/10.1007/s11107-017-0699-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-017-0699-7