Skip to main content
Log in

Dependence of thermal sensitivity of LPFG on waveguide and material parameters

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This article demonstrates the effect of waveguide and material parameters on thermal sensitivity trends adopted by different cladding modes based on long-period fiber grating. Three-layer fiber geometry-based mathematical model has been implemented to estimate cladding modes. It is observed that for a cladding mode, the sign and magnitude of thermal sensitivity slope depend upon the designed grating period closer to period at dispersion turn around point. The \(\hbox {LP}_{10}\) and \(\hbox {LP}_{11}\) cladding modes have shown blueshift and maximum thermal sensitivity above all other modes at designed grating periods of 225 and \(195\,\upmu \hbox {m}\), respectively. The material parameter of fiber (thermo-optic coefficient) has also resulted in increment in sensitivity with the increase in difference amid its values for core and cladding region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wada, M., Sakamoto, T., Mori, T., Yamamoto, T., Hanzawa, N., Yamamoto, F.: Modal gain controllable 2-LP-mode fiber amplifier using PLC type coupler and long-period grating. J. Lightwave Technol. 32, 4092–4098 (2014)

    Article  Google Scholar 

  2. Liu, H., Liang, H., Sun, M., Ni, K., Jin, Y.: Simultaneous measurement of humidity and temperature based on a long-period fiber grating inscribed in fiber loop mirror. IEEE Sens. J. 14(3), 893–896 (2014)

    Article  Google Scholar 

  3. Wang, L., Zhang, W., Wang, B., Chen, L., Bai, Z., Gao, S., Li, J., Liu, Y., Zhang, L., Zhou, Q., Yan, T.: Simultaneous strain and temperature measurement by cascading few-mode fiber and single-mode fiber long-period fiber gratings. Appl. Opt. 53(30), 7045–7049 (2014)

    Article  Google Scholar 

  4. Hill, K.O., Fujii, Y., Johnson, D.C., Kawasaki, B.S.: Photosensitivity in optical fiber waveguides application to reflection filter fabrication. Appl. Phys. Lett. 32(6), 647–649 (1978)

    Article  Google Scholar 

  5. Vengsarkar, A.M., Lemaire, P.J., Judkins, J.B., Bhatia, V., Erdogan, T., Sipe, J.E.: Long-period fiber gratings as band-rejection filters. J. Lightwave Technol. 14(1), 58–65 (1996)

    Article  Google Scholar 

  6. Bhatia, V.: Applications of long period fiber gratings to single and multi-parameter sensing. Opt. Express 4, 457–466 (1999)

    Article  Google Scholar 

  7. MacDougall, T.W., Pilevar, S., Haggans, C.W.: Generalized expression for the growth of long period gratings. IEEE Photonics Technol. Lett. 10(10), 1449–1451 (1998)

    Article  Google Scholar 

  8. Shu, X., Zhang, L., Bennion, I.: Sensitivity characteristics of long-period fiber gratings. J. Lightwave Technol. 20(2), 255–266 (2002)

    Article  Google Scholar 

  9. Shu, X., Allsop, T., Gwandu, B., Zhang, L., Bennion, I.: High-temperature sensitivity of long-period gratings in B–Ge codoped fiber. IEEE Photonics Technol. Lett. 13(8), 818–820 (2001)

    Article  Google Scholar 

  10. Venugopalan, T., Yeo, T.L., Sun, T., Grattan, K.T.V.: High sensitivity long-period grating-based temperature monitoring using a wide wavelength range to 2.2\(\upmu \text{ m }\). Opt. Commun. 268, 42–45 (2006)

    Article  Google Scholar 

  11. Bhatia, V., Campbell, D.K., Sherr, D., D’Alberto, T.G., Zabaronick, N.A., Ten Eyck, G.A., Murphy, K.A., Claus, R.O.: Temperature-insensitive and strain insensitive long-period grating sensors for smart structures. Opt. Eng. 36, 1872–1876 (1997)

    Article  Google Scholar 

  12. Singh, R., Kumar, H., Sharma, E.K.: Design of long-period gratings: necessity of a three-layer fiber geometry for cladding mode characteristics. Microw. Opt. Technol. Lett. 37(1), 45–49 (2003)

    Article  Google Scholar 

  13. Adams, J.: An Introduction to Optical Waveguides. Wiley, New York (1981)

    Google Scholar 

  14. Erdogan, T.: Fiber grating spectra. J. Lightwave Technol. 15(8), 1277–1294 (1997)

    Article  Google Scholar 

  15. Grubsky, V., Feinberg, J.: Long-period fiber gratings with variable coupling for real-time sensing applications. Opt. Lett. 25(4), 203–205 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivendu Prashar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prashar, S., Engles, D. & Malik, S.S. Dependence of thermal sensitivity of LPFG on waveguide and material parameters. Photon Netw Commun 35, 258–264 (2018). https://doi.org/10.1007/s11107-017-0740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0740-x

Keywords

Navigation