Skip to main content

Advertisement

Log in

MIMO-enabled integrated MGDM–WDM distributed antenna system architecture based on plastic optical fibers for millimeter-wave communication

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Design of a low-cost fiber–wireless communication architecture is desirable by network operators. Therefore, we demonstrate the transmission of \(2 \times 2\) MIMO spatial streams, each having 2 Gbps DPSK signal to two different radio access units (RAUs) in a distributed antenna system architecture. The proposed architecture employs mode group division multiplexing in combination with wavelength division multiplexing to transport RF DPSK signals centered at 10 GHz. The RF signals are used to modulate optical carriers that are centered at 1300 nm and transmitted toward the RAUs over perfluorinated graded-index plastic optical fiber. Heterodyne detection is performed at the RAUs to transmit mm-wave signals at 60 GHz to the end users. Furthermore, wireline access is also achieved at each RAU to support simplex services. A cost-efficient multiple wavelength source is generated from a single laser by employing a dual-drive Mach–Zehnder modulator. An increase in multiplexing gain is achieved using the two LP modes, LP01 and LP11, of each generated wavelength. The proposed architecture gives acceptable BER results for practical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. VNI Global Fixed and Mobile Internet Traffic Forecasts. CISCO. http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html#mobile-forecast (2017). Accessed 03 March 2017

  2. Thomas, V.A., Ghafoor, S., El-Hajjar, M., Hanzo, L.: The “Rap” on ROF: radio over fiber using radio access point for high data rate wireless personal area networks. IEEE Microw. Mag. 16(9), 64–78 (2015)

    Article  Google Scholar 

  3. Gulistan, A., Ghafoor, S.: Self-phase modulation-based multiple carrier generation for radio over fiber duplex baseband communication. Photonic Netw. Commun. 29(2), 133–137 (2015)

    Article  Google Scholar 

  4. Lannoo, B., Dixit, A., Colle, D., Bauwelinck, J., Dhoedt, B., Jooris, B., Moerman, I., Pickavet, M., Rogier, H., Simoens, P., Torfs, G., Ginste, D.V., Demeester, P.: Radio-over-fibre for ultra-small 5G cells. In: Proceedings of IEEE 17th International Conference Transparent Optical Networks (ICTON), 2015, pp. 1–4 (July 2015)

  5. What Fibre to the Home can do for your community. FTTH Council Europe. http://www.ftthcouncil.eu/documents/Publications/Primer_UpdateMay2014_FINAL.pdf (2014). pp. 1–19 Accessed 09 December 2016

  6. FTTH in Asia-Pacific reaches 100 million milestone. NExsT News. http://www.prysmiangroup.com/staticres/Nexst-2015-3/articles/news.html (2015). Accessed 20 December 2016

  7. Daum, W., Krauser, J., Zamzow, P.E., Ziemann, O.: POF, Polymer Optical Fiber for Data Communications. Springer, Berlin Heidelberg (2002)

    Book  Google Scholar 

  8. Alavi, S.E., Soltanian, M.R.K., Amiri, I.S., Khalily, M., Supaat, A.S.M., Ahmad, A.: Towards 5G: a photonic based millimeter wave signal generation for applying in 5G access fronthaul. Sci. Rep. 6, 19891 (2016). https://doi.org/10.1038/srep19891

    Article  Google Scholar 

  9. Zeng, J., van den Boom, H.P.A., Koonen, A.M.J.: Five-subcarrier multiplexed 64-QAM transmission over a 50-m core diameter graded index perfluorinated polymer optical fiber. In: Proceedings IEEE Optical and Fiber Communications/National Fiber Optic Engineers Conf. (OFC/NFOEC), 2008, pp. 1–3 (February 2008)

  10. YU, J., Qian, D., Huang, M., Huang, M., Jia, Z., Chang, G.K., Wang, T.: 16Gbit/ s radio OFDM signals over graded-index plastic optical fiber. In: Proceedings of IEEE 34th European Conference on Optical Communications (ECOC), 2008, pp. 1–2 (September 2008)

  11. Lee, S.S.J., Breyer, F., Randel, S., Gaudino, R., Bosco, G., Bluschke, A., Matthews, M., Rietzsch, P., Steglich, R., van den Boom, H.P.A., Koonen, A.M.J.: Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibers. J. Lightwave Technol. 27(11), 1503–1513 (2009)

    Article  Google Scholar 

  12. Giaretta, G., White, W., Wegmuller, M., Onishi, T.: High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (\(<100 \text{ m }\)). IEEE Photon. Technol. Lett. 12(3), 347–349 (2002)

    Article  Google Scholar 

  13. Schbllmann, S., Wree, C., Joshi, A., Rosenkranz, W.: First Experimental Transmission over 50 m GI-POF at 40 Gb/s for Variable Launching Offsets. In: Proceedings of VDE 33rd European Conference on Optical Communications. (ECOC), 2007, pp. 1–2 (September 2008)

  14. Polley, A., Ralph, S.E.: 100 m, 40 Gb/s plastic optical fiber link. In: Proceedings of IEEE Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), 2008, pp. 1–3 (February 2008)

  15. Lethien, C., Goffin, A., Vilcot, J.P., Loyez, C.: Radio over fiber systems using perfluorinated graded index polymer optical fiber. Microw. Opt. Technol. Lett. 48(6), 1197–1199 (2006)

    Article  Google Scholar 

  16. Lu, H.-H., Chang, C.-H., Peng, P.-C., Su, H.-S., Hu, H.-W.: A radio-over-GI-POF transport system. J. Lightwave Technol. 28(13), 1917–1921 (2010)

    Article  Google Scholar 

  17. Jian, W., Liu, C., Chien, H.-C., Fan, S.-H., Yu, J., Wang, J., Dong, Z., Yu, J., Yu, C., Chang, G.-K.: QPSK-OFDM radio over polymer optical fiber for broadband in-building 60GHz wireless access. In: Proceedings of IEEE Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), 2010, pp. 1–3 (February 2010)

  18. Forni, F., Shi, Y., van den Boom, H.P.A., Tangdiongga, E., Konnen, A.M.J.: LTE-A compliant multi-band radio and gigabit/s baseband transmission over 50 m of 1 mm core diameter GI-POF for in-home networks. Electron. Lett. 52(9), 738–740 (2016)

    Article  Google Scholar 

  19. Yu, J., Li, X., Chi, N.: Faster than fiber: over 100-Gb/s signal delivery in fiber wireless integration system. Opt. Exp. 21(19), 22885–22904 (2013)

    Article  Google Scholar 

  20. Miyamoto, K., Tashiro, T., Higashino, T., Tsukamoto, K., Komaki, S., Hara, K., Taniguchi, T., Kani, J.-i., Yoshimoto, N., Iwatsuki, K.: Experimental demonstration of MIMO RF signal transmission in RoF-DAS over WDM-PON. In: Proceedings of IEEE Microwave Photonics/Asia-Pacific Microwave Photonics Conference (MWP/APMP), 2011, pp. 25–28 (October 2011)

  21. Kanno, A., Kuri, T., Hosako, I., Kawanishi, T., Yoshida, Y., Yasumura, Y., Kitayama, K-i: Optical and millimeter-wave radio seamless MIMO transmission based on a radio over fiber technology. Opt. Exp. 20(28), 29395–29403 (2012)

    Article  Google Scholar 

  22. Li, X., Xiao, J., Yu, J.: Long-distance wireless mm-wave signal delivery at W-band. J. Lightw. Technol. 34(2), 661–668 (2016)

    Article  Google Scholar 

  23. Li, X., Yu, J., Xiao, J.: Demonstration of ultra-capacity wireless signal delivery at W-band. J. Lightw. Technol. 34(1), 180–187 (2016)

    Article  Google Scholar 

  24. Li, X., Yu, J., Zhang, J., Dong, Z., Li, F., Chi, N.: A 400G optical wireless integration delivery system. Opt. Exp. 21(16), 18812–18819 (2013)

    Article  Google Scholar 

  25. Awad, M., Dayoub, I., Hamouda, W., Rouvaen, J.-M.: Adaptation of the mode group diversity multiplexing technique for radio signal transmission over multimode fiber. J. Opt. Commun. Netw. 3(1), 1–9 (2010)

    Article  Google Scholar 

  26. Gordon, G., Carpenter, J., Crisp, M., Wilkinson, T., Penty, R., White, I.: Demonstration of radio-over-fibre transmission of broadband MIMO over multimode fibre using mode division multiplexing. In: Proceedings of IEEE European Conference and Exhibition on Optical Communication 2012, pp. 1–3 (September 2012)

  27. Gordon, G.S.D., Crisp, M.J., Penty, R.V., Wilkinson, T.D., White, I.H.: Feasibility demonstration of a mode-division multiplexed MIMO-enabled radio-over-fiber distributed antenna system. J. Lightwave Technol. 32(20), 3521–3528 (2014)

    Article  Google Scholar 

  28. Diamantopoulos, N., Inudo, S., Yoshida, Y., Maruta, A., Kanno, A., Dat, P.T., Kawanishi, T., Maruyama, R., Kuwaki, N., Matsuo, S., Kitayama, K.: Mode-division multiplexed W-band RoF transmission for higher-order spatial multiplexing. In: Proceedings of IEEE Optical Fiber Communication Conference and Exhibition (OFC), 2015, pp. 1–3 (March 2015)

  29. Kitayama, K.-I., Maruta, A., Yoshida, Y., Diamantopoulos, N.P., Huang, Y.-C., Nakazawa, M., Isoda, T.: Mode division multiplexing network: a deployment scenario in metro area network. Proc. IEEE Glob. Commun. Conf. 2014, 2154–2159 (2014)

    Google Scholar 

  30. Han, L., Liang, S., Xu, J., Qiao, L., Zhu, H., Wang, W.: Simultaneous wavelength- and mode-division (de)multiplexing for high-capacity on-chip data transmission link. IEEE Photon. J. 8(2), 1 (2016)

    Article  Google Scholar 

  31. Franz, B., Bulow, H.: Experimental evaluation of principal mode groups as high-speed transmission channels in spatial multiplex systems. IEEE Photon. Technol. Lett. 24(16), 1363–1365 (2012)

    Article  Google Scholar 

  32. Chen, H., Van den Boom, H.P.A., Koonen, T.: 30Gbit/s \(3 \times 3\) optical mode group division multiplexing system with mode-selective spatial filtering. IEEE Photon. Technol. Lett. 23(18), 1283–1285 (2011)

    Article  Google Scholar 

  33. Zhang, L., Hu, X., Cao, P., Wang, T., Su, Y.: Optical frequency comb generation based on chirping of Mach–Zehnder Modulators. Opt. Commun. 344, 139–146 (2015)

    Article  Google Scholar 

  34. Kuri, T., Kitayama, K.: Optical heterodyne detection technique for densely multiplexed millimter-wave-band radio-on-fiber systems. J. Lightwave Technol. 21(12), 3167–3179 (2003)

    Article  Google Scholar 

  35. Wiberg, A., Perez-Millan, P., Andres, M.V., Andrekson, P.A., Hedekvist, P.O.: Fiber-optic 40-GHz mm-wave link with 2.5-Gb/s data transmission. IEEE Photon. Technol. Lett. 17(9), 1938–1940 (2005)

    Article  Google Scholar 

  36. Arik, S., Po Ho, K., Kahn, J.M.: Delay spread reduction in mode-division multiplexing: mode coupling versus delay compensation. J. Lightwave Technol. 33(21), 4504–4512 (2015)

    Article  Google Scholar 

  37. Xia, C., Chand, N., Velzquez-Bentez, A.M., Liu, X., Lopez, J.E.A., Wen, H., Zhu, B., Effenberger, F., Amezcua-Correa, R., Li, G.: Demonstration of world’s first few-mode GPON. In: Proceedings of IEEE European Conference on Optical Communications (ECOC), 2014, pp. 1–3 (September 2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Ghafoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, A., Ghafoor, S. & Butt, M.F.U. MIMO-enabled integrated MGDM–WDM distributed antenna system architecture based on plastic optical fibers for millimeter-wave communication. Photon Netw Commun 35, 265–273 (2018). https://doi.org/10.1007/s11107-017-0741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0741-9

Keywords