Abstract
In this paper, a hybrid-core circular cladded photonic crystal fiber is designed and analyzed for application in the terahertz frequency range. We introduce a rectangular structure in addition to a conventional hexagonal structure in the core to reduce the material absorption loss. The modal characteristics of the fiber have been investigated using full vector finite element method. Simulated results exhibit an ultra-low effective material loss of 0.035 cm\(^{-1}\) and ultra-flattened dispersion of 0.07 ps/THz/cm. Some other important fiber characteristics suitable for terahertz signal transmission including confinement loss, core power fraction, effective area and single-mode conditions of the fiber have also been investigated. In order to simplify design and facilitate fabrication, only circular shaped air holes have been employed. Due to its promising characteristics, the proposed waveguide may provide efficient transmission of broadband terahertz signals.













Similar content being viewed by others
References
Abbott, D., Zhang, X.C.: Scanning the issue: T-ray imaging, sensing, and retection. Proc. IEEE 95(8), 1509–1513 (2007)
Withayachumnankul, W., Png, G.M., Yin, X., Atakaramians, S., Jones, I., Lin, H., Ung, B.S.Y., Balakrishnan, J., Ng, B.W.-H., Ferguson, B., Mickan, S.P., Fischer, B.M., Abbott, D.: T-ray sensing and imaging. Proc. IEEE 95(8), 1528–1558 (2007)
Islam, M.I., Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, M.S., Asaduzzaman, S.: Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring. Photonic Sens 7(3), 234–245 (2017)
Uthman, M., Rahman, B.M.A., Kejalakshmy, N., Agrawal, A., Grattan, K.T.V.: Design and characterization of low-loss photonic crystal fiber. IEEE Photonics J. 4(6), 2315–2325 (2012)
Byrne, M.B., Shaukat, M.U., Cunningham, J.E., Linfield, E.H., Davies, A.G.: Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro optic detection. Appl. Phys. Lett. 98(15), 151104 (2011)
Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon 1, 97–105 (2007)
Mantsch, H.H., Naumann, D.: Terahertz spectroscopy: the renaissance of far infrared spectroscopy. J. Mol. Struct. 964(1–3), 1–4 (2010)
Leahy-Hoppa, M.R., Fitch, M.J., Osiander, R.: Terahertz spectroscopy techniques for explosive detection. Anal. Bioanal. Chem. 395(2), 247–257 (2009)
Pinto, D., Obayya, S.S.A.: Improved complex envelope alternative direction implicit finite difference time domain method for photonic bandgap cavities. IEEE J. Lightwave Technol. 25(1), 440–447 (2007)
Ahmed, K., Chowdhury, S., Paul, B.K., Islam, M.S., Sen, S., Islam, M.I., Asaduzzaman, S.: Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl. Opt. 56, 3477–3483 (2017)
Jin, Y.-S., Kim, G.-J., Jeon, S.-G.: Terahertz dielectric properties of polymers. J. Korean Phys. Soc. 49(2), 513–517 (2006)
Wang, K., Mittleman, D.M.: Metal wires for terahertz waveguiding. Nature 432, 376–379 (2004)
Bowden, B., Harrington, J.A., Mitrofanov, O.: Silver/polystyrenecoated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 32(20), 2945–2947 (2007)
Chen, L., Chen, H., Kao, T., Lu, J., Sun, C.: Low-loss sub-wavelength plastic fiber for terahertz wave guiding. Opt. Lett. 31(3), 308–310 (2006)
Lu, J.Y., Yu, C.P., Chang, H.C., Chen, H., Li, Y., Pan, C., Sun, C.: Terahertz air-core microstructure fiber. Appl. Phys. Lett. 92(6), 064105 (2008)
Skorobogatiy, M., Dupuis, A.: Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 90(11), 113514 (2007)
Zhao, G., Mors, M.T., Wenckebach, T., Planken, P.C.M.: Terahertz dielectric properties of polystyrene foam. J. Opt. Soc. Am. B. 19(6), 1476–1479 (2002)
Birks, T.A., Knight, J.C., Russell, P.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(6), 961–963 (1997)
Knight, J.C., Birks, T.A., Cregan, R.F.: Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998)
Lee, J.H., The, P.C., Yusoff, Z.: A holey fiber based nonlinear thresholding device for optical CDMA receiver performance enhancement. IEEE Photon. Technol. Lett. 14(6), 876–878 (2002)
Lu, S., Li, W., Guo, H.: Analysis of birefringent and dispersive properties of photonic crystal fibers. Appl. Opt. 50(30), 5798–5802 (2011)
Ademgil, H., Haxha, S., Abdel Malek, F.: Highly nonlinear bending insensitive birefringent photonic crystal fibres. Sci. Res. 2(8), 608–616 (2010)
Hassani, A., Dupuis, A., Skorobogatiy, M.: Low loss porous terahertz fibers containing multiple subwavelength holes. Appl. Phys. Lett. 92(7), 071101 (2008)
Hassani, A., Dupuis, A., Skorobogatiy, M.: Porous polymer fibers for low-loss terahertz guiding. Opt. Express 16(9), 6340–6351 (2008)
Han, H., Park, H., Cho, M., Kim, J.: Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 80(15), 2634–2636 (2002)
Ung, B., Mazhorova, A., Dupuis, A., Rozé, M., Skorobogatiy, M.: Polymer microstructured optical fibers for terahertz wave guiding. Opt. Express 19(26), B848–B861 (2011)
Sultana, J., Islam, MdS, Atai, J., Islam, M.R., Abbott, D.: Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission. Opt. Eng. 56(7), 076114 (2017)
Islam, M.S., Sultana, J., Atai, J., Islam, M.R., Abbott, D.: Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation. Optik–Int. J. Light Electron Opt. 145, 398–406 (2017)
Bao, H., Nielsen, K., Rasmussen, H.K., Jepsen, P.U., Bang, O.: Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt. Express 20(28), 29507–29517 (2012)
Kaijage, S.F., Ouyang, Z., Jim, X.: Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013)
Islam, R., Hasanuzzaman, G.K.M., Habib, M.S., Rana, S., Khan, M.A.G.: Low-loss rotated porous core hexagonal single-mode fiber in THz regime. Opt. Fiber Technol. 24, 38–43 (2015)
Hasanuzzaman, G.K.M., Habib, S., Razzak, S.M.A.: Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance. J. Lightwave Technol. 33(19), 4027–4031 (2015)
Islam, M.S., Rana, S., Islam, M.R., Faisal, M., Rahman, H., Sultana, J.: Porous core photonic crystal fiber for ultra-low material loss in THz regime. IET Commun. 10(16), 2179–2183 (2016)
Islam, S., Islam, M.R., Faisal, M., Arefin, A.S.M.S., Rahman, H., Sultana, J., Rana, Sohel: Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime. Opt. Eng. 55(7), 076117 (2016)
Islam, R., Habib, M.S., Hasanuzzaman, G.K.M., Rana, S., Sadath, M.A., Markos, C.: A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photonics Technol. Lett. 28(14), 1737–1740 (2016)
Hasan, M.R., Akter, S., Khatun, T., Rifat, A.A., Anower, M.S.: Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56(4), 043108 (2017)
Ponseca, C.S., Pobre, R., Estacio, E., Sarukura, N., Argyros, A., Large, M.C.J., van Eijkelenborg, M.A.: Transmission of terahertz radiation using a micro-structured polymer optical fiber. Opt. Lett. 33(9), 902–904 (2008)
Goto, M., Quema, A., Takahashi, H., Ono, S., Sarukura, N.: Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys. 43(2B), 317–319 (2004)
Nielsen, K., Rasmussen, H.K., Adam, A.J.L., Planken Jepsen, P.C.M., Bang, O., Uhd, P.: Bendable, low-loss TOPAS fibers for the terahertz frequency range. Opt. Express 17(10), 8592–8601 (2004)
Tang, X., Jiang, Y., Sun, B., Chen, J., Zhu, X., Zhou, P., Wu, D., Shi, Y.: Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission. IEEE Photonics Technol. Lett. 25(4), 331–334 (2013)
Argyros, A.: Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials. ISRN Opt. 2013, 785162 (2013)
Islam, M.S., Sultana, J., Rana, S., Islam, M.R., Faisal, M., Kaijage, S.F., Abbott, D.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol. 24, 6–11 (2016)
Markos, C., Stefani, A., Nielsen, K., Rasmussen, H.K., Yuan, W., Bang, O.: High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express 21(4), 4758–4785 (2013)
Emiliyanov, G., Jensen, J.B., Bang, O., Hoiby, P.E., Pedersen, L.H., Kjaer, E.M., Lindvold, L.: Localized bio-sensing with TOPAS micro-structured polymer optical fiber. Opt. Lett. 32(5), 460–462 (2007)
Balakrishnan, J., Fischer, B.M., Abbott, D.: Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy. Appl. Opt. 48(12), 2262–2266 (2009)
Woyessa, G., Fasano, A., Stefani, A., Markos, C., Nielsen, K., Rasmussen, H.K., Bang, O.: Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express 24(2), 1253–1260 (2016)
Islam, M.S., Sultana, J., Atai, J., Abbott, D., Rana, S., Islam, M.R.: Ultra low loss hybrid core porous fiber for broadband applications. Appl. Opt. 56(9), 1232–1237 (2017)
Bai, J.J., Li, J.N., Zhang, H., Fang, H.: A porous terahertz fiber with randomly distributed air holes. Appl. Phys. B 103(2), 381–386 (2011)
Kiang, K.M., Frampton, K., Monro, T.M., Moore, R., Tucknott, J., Hewak, D.W., Richardson, D.J., Rutt, H.N.: Extruded singlemode non-silica glass holey optical fibres. Electron. Lett. 38(12), 546–547 (2002)
Bisen, R. T., Trevor, D. J.: Solgel-derived micro-structured fibers: fabrication and characterization, Opt. Fiber Commun. Conference., Technical Digest. OFC/NFOEC. https://doi.org/10.1109/OFC.2005.192772 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Islam, M.S., Sultana, J., Dorraki, M. et al. Low loss and low dispersion hybrid core photonic crystal fiber for terahertz propagation. Photon Netw Commun 35, 364–373 (2018). https://doi.org/10.1007/s11107-017-0751-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-017-0751-7