Skip to main content
Log in

10 Gbps CPRI signals transmission impaired by intercore crosstalk in 5G network fronthauls with multicore fibers

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The impact of intercore crosstalk (ICXT) of weakly-coupled multicore fibers (MCFs) on the transmission performance of a Common Public Radio Interface (CPRI) signal in 5G networks fronthaul is studied by numerical simulation. The results show that forward error correction-supported CPRI signals have more tolerance to ICXT due to the higher targeted bit error rate (of 10−3). For a receiver power penalty of 1 dB, an improvement of the tolerance of CPRI signals to ICXT, due to the increase of the MCF skew by about 1 dB, is observed. However, for the crosstalk levels that lead to 1 dB power penalty, we have shown that, the system is unavailable with a high probability. The crosstalk level required for an acceptable outage probability is about 10 dB lower than the crosstalk level leading to 1 dB power penalty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. China Mobile: C-RAN: the road towards green RAN. White Paper, version 2.5, https://pdfs.semanticscholar.org/eaa3/ca62c9d5653e4f2318aed9ddb8992a505d3c.pdf (2011). Accessed 9 January 2019

  2. Pizzinat, A., Chanclou, P., Saliou, F., Diallo, T.: Things you should know about fronthaul. IEEE/OSA J. Lightw. Technol. 33(5), 1077–1083 (2015)

    Article  Google Scholar 

  3. Shafi, M., Molisch, A., Smith, P., Haustein, T., Zhu, P., Silva, P., Tufvesson, F., Benjebbour, A., Wunder, G.: 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017)

    Article  Google Scholar 

  4. Chanclou, P., Pizzinat, A., Clech, F., Reedeker, T., Lagadec, Y., Salliou F., Guyader, B., Guillo, L., Deniel, Q., Gosselin, S., Le, S., Diallo, T., Brenot, R., Lelarge, F., Marazzi, L., Parolari, O., Martinelli, M., Dull, S., Gebrewold, S., Hillerkuss, D., Leuthold, J., Gavioli, G., Galli, P.: Optical fiber solution for mobile fronthaul to achieve cloud radio access network. In: Future Network and Mobile Summit 2013, session 9e, Lisbon, Portugal (2013)

  5. Galve, J.M., Gasulla, I., Sales, S., Capmany, J.: Reconfigurable radio access networks using multicore fibers. IEEE J. Quantum Electron. 52(1), 1–7 (2016)

    Article  Google Scholar 

  6. Alimi, I., Teixeira, A., Monteiro, P.: Towards an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies, requirements, challenges and solutions. IEEE Commun. Surv. Tuts. 20(1), 708–769 (2018)

    Article  Google Scholar 

  7. Dat, P., Kanno, A., Kawanishi, T.: Radio-on-radio-over-fiber: efficient fronthauling for small cells and moving cells. IEEE Wirel. Commun. 22(5), 67–75 (2015)

    Article  Google Scholar 

  8. Common Public Radio Interface: CPRI specification V7.0. Standard Document Specification, vol. 1 (2015)

  9. Pfeiffer, T.: Next generation mobile fronthaul and midhaul architectures. IEEE/OSA J. Opt. Commun. Netw. 7(11), B38–B45 (2015)

    Article  Google Scholar 

  10. Telecommunications Standardization Sector of ITU-T: Transport network support of IMT-2020/5G. ITU-T Technical Report (2018). https://www.itu.int/md/T17-SG15-170619-TD-GEN-0078/en. Accessed 8 January 2019

  11. Macho, A., Morant, M., Llorente, R.: Next-generation optical fronthaul systems using multicore fiber media. IEEE/OSA J. Lightw. Technol. 34(20), 4819–4827 (2016)

    Article  Google Scholar 

  12. Galve, J., Gasulla, I., Sales, S., Capmany, J.: Fronthaul design for radio access networks using multicore fibers. Waves Magaz. 7(1), 69–80 (2015)

    Google Scholar 

  13. Sakaguchi, J., Puttnam, B., Klaus, W., Awaji, Y., Wada, N., Kanno, A., Kawanishi, T., Imamura, K., Inaba, H., Mukasa, K., Sugizaki, R., Kobayashi, T., Watanabe, M.: 305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber. IEEE/OSA J. Lightw. Technol. 31(4), 554–562 (2013)

    Article  Google Scholar 

  14. Puttnam, B., Luís, R., Mendinueta, J., Sakaguchi, J., Klaus, W., Awaji, Y., Wada, N., Kanno, A., Kawanishi, T.: High-capacity self-homodyne PDM-WDM-SDM transmission in a 19-core fiber. Opt. Expr. 22(18), 21185–21191 (2014)

    Article  Google Scholar 

  15. Feuer, M., Nelson, L., Zhou, X., Woodward, S., Isaac, R., Zhu, B., Taunay, T., Fishteyn, M., Fini, J., Yan, M.: Joint digital signal processing receivers for spatial superchannels. IEEE Photon. Techn. Lett. 24(21), 1957–1960 (2012)

    Article  Google Scholar 

  16. Igarashi, K., Tsuritani, T., Morita, I., Tsuchida, Y., Maeda, K., Tadakuma, M., Saito, T., Watanabe, K., Imamura, K., Sugizaki, R., Suzuki, M.: Super-Nyquist-WDM transmission over 7326-km seven-core fiber with capacity-distance product of 1.03 Exabit/s km. Opt. Expr. 22(2), 1220–1228 (2014)

    Article  Google Scholar 

  17. Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., Sasaoka, E.: Design and fabrication of ultra-low crosstalk and low-loss multicore fiber. Opt. Expr. 19(17), 16576–16592 (2011)

    Article  Google Scholar 

  18. Tu, J., Saitoh, K., Koshiba, M., Takenaga, K., Matsuo, S.: Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber. Opt. Expr. 20(14), 15157–15170 (2012)

    Article  Google Scholar 

  19. Cartaxo, A., Luís, R., Puttnam, B., Hayashi, T., Awaji, Y., Wada, N.: Dispersion impact on the crosstalk amplitude response of homogeneous multi-core fibers. IEEE Photon. Technol. Lett. 28(17), 1858–1861 (2016)

    Article  Google Scholar 

  20. Luís, R., Puttnam, B., Cartaxo, A., Klaus, W., Mendinueta, J., Awaji, Y., Wada, N., Nakanishi, T., Hayashi, T., Sasaki, T.: Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers. IEEE/OSA J. Lightw. Technol. 15(2), 441–447 (2016)

    Article  Google Scholar 

  21. Alves, T., Cartaxo, A., Luís, R., Puttnam, B., Awaji, Y., Wada, N.: Intercore crosstalk in direct-detection homogeneous multicore fiber systems impaired by laser phase noise. Opt. Expr. 25(23), 29417–29431 (2017)

    Article  Google Scholar 

  22. Alves, T., Cartaxo, A.: Intercore crosstalk in homogeneous multicore fibers: theoretical characterization of stochastic time evolution. IEEE/OSA J. Lightw. Technol. 35(21), 4613–4623 (2017)

    Article  Google Scholar 

  23. Alves, T., Cartaxo, A.: Characterization of the stochastic time evolution of short-term average intercore crosstalk in multicore fibers with multiple interfering cores. Opt. Expr. 26(4), 4605–4620 (2018)

    Article  Google Scholar 

  24. Koshiba, M., Saitoh, K., Takenaga, K., Matsuo, S.: Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers. IEEE Photon. J. 4(5), 1987–1995 (2012)

    Article  Google Scholar 

  25. Cartaxo, A., Alves, T.: Discrete changes model of inter-core crosstalk of real homogeneous multi-core fibers. IEEE/OSA J. Lightw. Technol. 35(12), 2398–2408 (2017)

    Article  Google Scholar 

  26. Soeiro, R., Alves, T., Cartaxo, A.: Dual polarization discrete changes model of inter-core crosstalk in multi-core fibers. IEEE Photon. Technol. Lett. 29(16), 1395–1398 (2017)

    Article  Google Scholar 

  27. Ye, F., Tu, J., Saitoh, K., Takenaga, K., Matsuo, S., Takara, H., Morioka, T.: Wavelength dependence of inter-core crosstalk in homogeneous multi-core fibers. IEEE Photon. Technol. Lett. 28(1), 27–30 (2016)

    Article  Google Scholar 

  28. Sano, A., Takara, H., Kobayashi, T., Miyamoto, Y.: Crosstalk-managed high capacity long haul multicore fibre transmission with propagation-direction interleaving. IEEE/OSA J. Lightw. Technol. 32(16), 2771–2779 (2014)

    Article  Google Scholar 

  29. Takenaga, K., Arakawa, Y., Tanigawa, S., Guan, N., Matsuo, S., Saitoh, K., Koshiba, M.: Reduction of crosstalk by trench-assisted multi-core fiber. In: Proc. Optical Fiber Communication Conference and Exhibition, OFC 2011, Paper OWJ4, Los Angeles, USA, (2011)

  30. Hayashi, T., Taru, T., Shimakawa, O., Sasaki, T., Sasaoka, E.: Characterization of crosstalk in ultra-low-crosstalk multi-core fiber. IEEE/OSA J. Lightw. Technol. 30(4), 583–589 (2012)

    Article  Google Scholar 

  31. Puttnam, B., Luís, R., Eriksson, T., Klaus, W., Mendinueta, J., Awaji, Y., Wada, N.: Impact of inter-core crosstalk on the transmission distance of QAM formats in multi-core fibers. IEEE Photon. J. 8(5), 936–944 (2016)

    Google Scholar 

  32. Hayashi, T., Sasaki, T., Sasaoka, E.: Behavior of inter-core crosstalk as a noise and its effect on Q-factor in multi-core fiber. IEICE Trans. Commun. E97-B(5), 936–944 (2014)

    Article  Google Scholar 

  33. Shimakawa, O., Shiazaki, M., Sano, T., Inone, A.: Pluggable fan-out realizing physical-contact and low coupling loss for multi-core fiber. In: Proc. Optical Fiber Communication Conference and Exhibition, OFC 2013, Paper OM3I.2, Anaheim, USA (2013)

  34. Jung, Y., Hayes, J., Alam, S., Richardson, D.: Multicore fibre fan-in/fan-out device using fibre optic collimators. In: Proc. European Conference on Optical Communication, ECOC 2017, Paper P1.SC1.17, Gothenburg, Sweden (2017)

  35. Agrawal, G.P.: Fiber-optic communication systems, 4th edn. John Wiley & Sons, New Jersey (2010)

    Book  Google Scholar 

  36. Rebola, J., Cartaxo, A.: Gaussian approximation for performance assessment of optically preamplified receivers with arbitrary optical and electrical filters. IET Optoelectron. 148(3), 135–142 (2001)

    Article  Google Scholar 

  37. Carlson, A., Crilly, P.: Communication systems: an introduction to signals and noise in electrical communication, 5th edn. McGraw-Hill, New York (2010)

    Google Scholar 

  38. Parolari, P., Marazzi, L., Brunero, M., Martinelli, M., Maho, A., Barbet, S., Lelarge, F., Brenot, R., Gavioli, G., Simon, G., Saliou, F., Deniel, Q., Chanclou, P.: Operation of RSOA WDM PON self-seeded transmitter over more 50 km of SSMF up to 10 Gb/s. In: Proc. Optical Fiber Communication Conference and Exhibition, OFC 2014, Paper W3G.4, San Francisco, USA (2014)

  39. Pinheiro, B., Rebola, J., Cartaxo, A.: Impact of inter-core crosstalk on the performance of multi-core fibers-based SDM systems with coherent detection. In: Proc. International Conference on Photonics, Optics and Laser Technology, Photooptics 2018, Funchal, Portugal, 74–81 (2018)

  40. Rademacher, G., Luís, R., Puttnam, B., Awaji, Y., Wada, N.: Crosstalk dynamics in multi-core fibers. Opt. Expr. 25(10), 12020–12028 (2017)

    Article  Google Scholar 

  41. Cvijetic, N., Wilson, S., Qian, D.: System outage probability due to PMD in high-speed optical OFDM transmission. IEEE/OSA J. Lightw. Technol. 26(14), 2118–2127 (2008)

    Article  Google Scholar 

  42. Winzer, P., Foschini, G.: MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. Opt. Expr. 19(17), 16680–16696 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Fundação para a Ciência e a Tecnologia (FCT) from Portugal under the project of Instituto de Telecomunicações AMEN-ID/EEA/50008/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João L. Rebola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebola, J.L., Cartaxo, A.V.T. & Marques, A.S. 10 Gbps CPRI signals transmission impaired by intercore crosstalk in 5G network fronthauls with multicore fibers. Photon Netw Commun 37, 409–420 (2019). https://doi.org/10.1007/s11107-019-00828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00828-0

Keywords

Navigation