Skip to main content
Log in

Improving the transmission efficiency in eight-channel all optical demultiplexers

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In order to improve the transmission efficiency in eight-channel optical demultiplexers, we are going to use novel resonant cavities for performing the wavelength selecting function in photonic crystal demultiplexers. These resonant cavities will be created by removing one rod and reducing the radius of four rods. By incorporating eight cavities with different sizes for the reduced rods, we proposed a structure which is capable of separating eight optical channels with transmission efficiencies very close to 100%. The average channel spacing is about 3 nm. Crosstalk values vary between − 40 and − 16 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  Google Scholar 

  2. Ying, C., Jing, D., Jia, S., Qiguang, Z., Weihong, B.: Study on tunable filtering performance of compound defect photonic crystal with magnetic control. Int. J. Light Electron Opt. 126, 5353–5356 (2015)

    Article  Google Scholar 

  3. Talebzadeh, R., Soroosh, M., Daghooghi, T.: A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity. IETE J. Res. 62, 866–872 (2016)

    Article  Google Scholar 

  4. Khorshidahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–20528 (2010)

    Article  Google Scholar 

  5. Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism. Opt. Express 16, 17209 (2008)

    Article  Google Scholar 

  6. Lee, K.Y., Lin, J.M., Yang, Y.C., Yang, Y.B., Wu, J.S., Lin, Y.J., Lee, W.Y.: The designs of XOR logic gates based on photonic crystals (2008). http://dx.doi.org/10.1117/12.803465

  7. Noori, M., Soroosh, M., Baghban, H.: Highly efficient self-collimation based waveguide for Mid-IR applications. Photon. Nanostruct. Fundam. Appl. 19, 1–11 (2016)

    Article  Google Scholar 

  8. Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 47, 1109–1115 (2014)

    Article  MATH  Google Scholar 

  9. Mehdizadeh, F., Soroosh, M.: Designing of all optical NOR gate based on photonic crystal. Indian J. Pure Appl. Phys. 54, 35–39 (2016)

    Google Scholar 

  10. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. 49, 38 (2017)

    Article  Google Scholar 

  11. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photon. J. 9, 1–11 (2017)

    Article  Google Scholar 

  12. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56, 1799–1806 (2017)

    Article  Google Scholar 

  13. Mehdizadeh, F., Alipour-banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64, 1233–1239 (2017)

    Article  MathSciNet  Google Scholar 

  14. Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic crystal cavity-based WDM multiplexer. Photon. Nanostruct. Fundam. Appl. 5, 164–170 (2007)

    Article  Google Scholar 

  15. Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)

    Article  Google Scholar 

  16. Reza Rakhshani, M., Ali Mansouri-Birjandi, M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97–101 (2013)

    Article  Google Scholar 

  17. Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photon. Nanostruct. Fundam. Appl. 8, 14–22 (2010)

    Article  Google Scholar 

  18. Rostami, A., Banaei, H.A., Nazari, F., Bahrami, A.: An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Int. J. Light Electron Opt. 122, 1481–1485 (2011)

    Article  Google Scholar 

  19. Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications. Opt. Quantum Electron. 45, 1063–1075 (2013)

    Article  Google Scholar 

  20. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Int. J. Light Electron Opt. 124, 5964–5967 (2013)

    Article  MATH  Google Scholar 

  21. Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw. Commun. 31, 65–70 (2016)

    Article  Google Scholar 

  22. Marziye Mousavizadeh, S., Soroosh, M., Mehdizadeh, F.: Photonic crystal-based demultiplexers using defective resonant cavity. Optoelectron. Adv. Mater. Rapid Commun. 9, 28–31 (2015)

    Google Scholar 

  23. Kim, S., Park, I., Lim, H.: Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback. Opt. Exp. 12, 5145 (2004)

    Google Scholar 

  24. Johnson, S., Joannopoulos, J.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173 (2001)

    Article  Google Scholar 

  25. Alipour-Banaei, H., Jahanara, M., Mehdizadeh, F.: T-shaped channel drop filter based on photonic crystal ring resonator. Int. J. Light Electron Opt. 125, 5348–5351 (2014)

    Article  Google Scholar 

  26. Taflove, A.: Computational Electrodynamics: The Finite-difference Time-domain Method. Artech House, Norwood (1995)

    MATH  Google Scholar 

  27. Qiu, M.: Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals. Appl. Phys. Lett. 81, 1163–1165 (2002)

    Article  Google Scholar 

  28. Cheng, S.C., Wang, J.Z., Chen, L.W., Wang, C.C.: Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units. Int. J. Light Electron Opt. 123, 1928–1933 (2012)

    Article  Google Scholar 

  29. Naoum, R., Bouamami, S.: Temperature effect on the tenability of an eight-channel demultiplexer. Int. J. Light Electron Opt. 125, 5164–5166 (2014)

    Article  Google Scholar 

  30. Balaji, V.R., Murugan, M., Robinson, S.: Optimization of DWDM demultiplexer using regression analysis. J. Nanomater. 2016, 1–10 (2016)

    Article  Google Scholar 

  31. Wang, P., Ren, C., Han, P., Feng, S.: Multi-channel unidirectional and bidirectional wavelength filters in two dimensional photonic crystals. Opt. Mater. 46, 195–202 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Soroosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, B., Soroosh, M., Kovsarian, A. et al. Improving the transmission efficiency in eight-channel all optical demultiplexers. Photon Netw Commun 38, 115–120 (2019). https://doi.org/10.1007/s11107-019-00830-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00830-6

Keywords

Navigation