Skip to main content
Log in

Adaptive learning architecture-based predistorter for nonlinear VLC system

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A light-emitting diode (LED) acts as a transmitter in a visible-light communication (VLC) system. However, the nonlinear characteristics of LED limit the performance of the VLC system by degrading the quality of a transmitted signal. In recent years, several forms of predistorters have been proposed to mitigate the effects of LED nonlinearity; however, none of them have been able to approach the performance of a linear VLC system. In this paper, we propose an adaptive learning architecture (ALA)-based predistortion technique to estimate and compensate for LED nonlinearities in a VLC system. A DC-biased optical orthogonal frequency division multiplexing signal is considered. The performance with and without predistorter is analyzed assuming optical channel. It is shown that degradation due to LED nonlinearity can be compensated by using ALA-based predistortion, and the overall predistorter–LED system is able to approach near-linear performance. Further, the proposed predistorter architecture is also able to track the variations in LED nonlinearity and compensate them. Simulation results based on error vector magnitude, symbol error rate, amplitude distortion (AM/AM) curves and constellation plots validate the performance of our proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Komine, T., Nakagawa, M.: Integrated system of white LED visible-light communication and power-line communication. IEEE Trans. Consum. Electron. 49(1), 71–79 (2003). https://doi.org/10.1109/TCE.2003.1205458

    Article  Google Scholar 

  2. Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004). https://doi.org/10.1109/TCE.2004.1277847

    Article  Google Scholar 

  3. Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun. Mag. 49(9), 56–62 (2011). https://doi.org/10.1109/MCOM.2011.6011734

    Article  Google Scholar 

  4. Karunatilaka, D., Zafar, F., Kalavally, V., Parthiban, R.: Led based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutor. 17(3), 1649–1678 (2015)

    Article  Google Scholar 

  5. Pathak, P.H., Feng, X., Hu, P., Mohapatra, P.: Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutor. 17(4), 2047–2077 (2015)

    Article  Google Scholar 

  6. Elgala, H., Mesleh, R., Haas, H., Pricope, B.: OFDM visible light wireless communication based on white LEDs. In: 2007 IEEE 65th Vehicular Technology Conference—VTC2007-Spring, pp. 2185–2189 (2007). https://doi.org/10.1109/VETECS.2007.451

  7. Armstrong, J., Lowery, A.J.: Power efficient optical OFDM. Electron. Lett. 42(6), 370–372 (2006). https://doi.org/10.1049/el:20063636

    Article  Google Scholar 

  8. Armstrong, J.: OFDM for optical communications. J. Lightwave Technol. 27(3), 189–204 (2009). https://doi.org/10.1109/JLT.2008.2010061

    Article  Google Scholar 

  9. Hranilovic, S.: On the design of bandwidth efficient signalling for indoor wireless optical channels. Int. J. Commun. Syst. 18(3), 205–228 (2005). https://doi.org/10.1002/dac.700

    Article  Google Scholar 

  10. Gonzlez, O., Prez-Jimnez, R., Rodrguez, S., Rabadn, J., Ayala, A.: Adaptive OFDM system for communications over the indoor wireless optical channel. IEE Proc. Optoelectron. 153, 139–144(5) (2006). http://digital-library.theiet.org/content/journals/10.1049/ip-opt_20050081

  11. Yu, Z., Baxley, R.J., Zhou, G.T.: EVM and achievable data rate analysis of clipped OFDM signals in visible light communication. EURASIP J. Wirel. Commun. Netw. 2012(1), 321 (2012). https://doi.org/10.1186/1687-1499-2012-321

    Article  Google Scholar 

  12. Elgala, H., Mesleh, R., Haas, H.: A study of LED nonlinearity effects on optical wireless transmission using OFDM. In: 2009 IFIP International Conference on Wireless and Optical Communications Networks, pp. 1–5 (2009). https://doi.org/10.1109/WOCN.2009.5010576

  13. Neokosmidis, I., Kamalakis, T., Walewski, J.W., Inan, B., Sphicopoulos, T.: Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach. J. Lightwave Technol. 27(22), 4970–4978 (2009). https://doi.org/10.1109/JLT.2009.2028903

    Article  Google Scholar 

  14. Elgala, H., Mesleh, R., Haas, H.: Impact of LED nonlinearities on optical wireless OFDM systems. In: 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 634–638 (2010). https://doi.org/10.1109/PIMRC.2010.5671734

  15. Dimitrov, S., Sinanovic, S., Haas, H.: Clipping noise in OFDM-based optical wireless communication systems. IEEE Trans. Commun. 60(4), 1072–1081 (2012). https://doi.org/10.1109/TCOMM.2012.022712.100493

    Article  Google Scholar 

  16. Dimitrov, S., Sinanovic, S., Haas, H.: Signal shaping and modulation for optical wireless communication. J. Lightwave Technol. 30(9), 1319–1328 (2012). https://doi.org/10.1109/JLT.2012.2188376

    Article  Google Scholar 

  17. Tsonev, D., Sinanovic, S., Haas, H.: Complete modeling of nonlinear distortion in OFDM-based optical wireless communication. J. Lightwave Technol. 31(18), 3064–3076 (2013). https://doi.org/10.1109/JLT.2013.2278675

    Article  Google Scholar 

  18. Elgala, H., Mesleh, R., Haas, H.: Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs. Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009). https://doi.org/10.1504/IJUWBCS.2009.029003. http://www.inderscienceonline.com/doi/abs/10.1504/IJUWBCS.2009.029003

  19. Elgala, H., Mesleh, R., Haas, H.: Predistortion in optical wireless transmission using OFDM. In: 2009 9th International Conference on Hybrid Intelligent Systems, vol. 2, pp. 184–189 (2009). https://doi.org/10.1109/HIS.2009.321

  20. Mesleh, R., Elgala, H., Haas, H.: Led nonlinearity mitigation techniques in optical wireless OFDM communication systems. IEEE/OSA J. Opt. Commun. Netw. 4(11), 865–875 (2012). https://doi.org/10.1364/JOCN.4.000865

    Article  Google Scholar 

  21. Ying, K., Yu, Z., Baxley, R.J., Qian, H., Chang, G.K., Zhou, G.T.: Nonlinear distortion mitigation in visible light communications. IEEE Wirel. Commun. 22(2), 36–45 (2015). https://doi.org/10.1109/MWC.2015.7096283

    Article  Google Scholar 

  22. Kim, J.K., Hyun, K., Park, S.K.: Adaptive predistorter using NLMS algorithm for nonlinear compensation in visible-light communication system. Electron. Lett. 50(20), 1457–1459 (2014). https://doi.org/10.1049/el.2014.1835

    Article  Google Scholar 

  23. Mitra, R., Bhatia, V.: Chebyshev polynomial-based adaptive predistorter for nonlinear LED compensation in VLC. IEEE Photon. Technol. Lett. 28(10), 1053–1056 (2016). https://doi.org/10.1109/LPT.2016.2528168

    Article  Google Scholar 

  24. Mitra, R., Bhatia, V.: Precoded Chebyshev-NLMS-based pre-distorter for nonlinear LED compensation in NOMA-VLC. IEEE Trans. Commun. 65(11), 4845–4856 (2017). https://doi.org/10.1109/TCOMM.2017.2736548

    Article  Google Scholar 

  25. Qian, H., Yao, S.J., Cai, S.Z., Zhou, T.: Adaptive postdistortion for nonlinear leds in visible light communications. IEEE Photonics J. 6(4), 1–8 (2014). https://doi.org/10.1109/JPHOT.2014.2331242

    Article  Google Scholar 

  26. Ding, L., Zhou, G.T., Morgan, D.R., Ma, Z., Kenney, J.S., Kim, J., Giardina, C.R.: A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun. 52(1), 159–165 (2004). https://doi.org/10.1109/TCOMM.2003.822188

    Article  Google Scholar 

  27. Lee, T.P.: The nonlinearity of double-heterostructure LED’s for optical communications. Proc. IEEE 65(9), 1408–1410 (1977). https://doi.org/10.1109/PROC.1977.10728

    Article  Google Scholar 

  28. Aggarwal, P., Ahmad, R., Bohara, V.A., Srivastava, A.: Adaptive predistortion technique for nonlinear LED with dimming control in VLC system. In: 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1–6 (2017). https://doi.org/10.1109/ANTS.2017.8384165

  29. Arnon, S.: Visible Light Communication. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  30. Barros, D.J.F., Wilson, S.K., Kahn, J.M.: Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links. IEEE Trans. Commun. 60(1), 153–163 (2012). https://doi.org/10.1109/TCOMM.2011.112311.100538

    Article  Google Scholar 

  31. Armstrong, J., Schmidt, B.J.C.: Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN. IEEE Commun. Lett. 12(5), 343–345 (2008). https://doi.org/10.1109/LCOMM.2008.080193

    Article  Google Scholar 

  32. Barry, J.R., Kahn, J.M., Krause, W.J., Lee, E.A., Messerschmitt, D.G.: Simulation of multipath impulse response for indoor wireless optical channels. IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993)

    Article  Google Scholar 

  33. Komine, T., Nakagawa, M.: Performance evaluation of visible-light wireless communication system using white led lightings. In: Proceedings of 9th International Symposium on Computers and Communications, 2004, ISCC 2004, vol. 1, pp. 258–263. IEEE (2004)

  34. Inan, B., Lee, S.C.J., Randel, S., Neokosmidis, I., Koonen, A.M.J., Walewski, J.W.: Impact of LED nonlinearity on discrete multitone modulation. IEEE/OSA J. Opt. Commun. Netw. 1(5), 439–451 (2009). https://doi.org/10.1364/JOCN.1.000439

    Article  Google Scholar 

  35. Shafik, R.A., Rahman, M.S., Islam, A.R.: On the extended relationships among EVM, BER and SNR as performance metrics. In: 2006 International Conference on Electrical and Computer Engineering, pp. 408–411 (2006). https://doi.org/10.1109/ICECE.2006.355657

  36. Wu, L., Zhang, Z., Dang, J., Liu, H.: Adaptive modulation schemes for visible light communications. J. Lightwave Technol. 33(1), 117–125 (2015)

    Article  Google Scholar 

  37. Afgani, M.Z., Haas, H., Elgala, H., Knipp, D.: Visible light communication using OFDM. In: 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006, pp. 6–134 (2006). https://doi.org/10.1109/TRIDNT.2006.1649137

  38. Schulze, H.: Frequency-domain simulation of the indoor wireless optical communication channel. IEEE Trans. Commun. 64(6), 2551–2562 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Aggarwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, P., Kabra, T., Ahmad, R. et al. Adaptive learning architecture-based predistorter for nonlinear VLC system. Photon Netw Commun 38, 258–269 (2019). https://doi.org/10.1007/s11107-019-00848-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00848-w

Keywords

Navigation