Skip to main content
Log in

Energy-efficient, EDFA lifetime-aware network planning along with virtualized elastic regenerator placement for IP-over-EON

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, we focus on energy-efficient network planning (including traffic provisioning) along with optimal placement of virtualized elastic regenerators (VERs) for IP-over-elastic optical networks based on a static traffic profile, using a mixed integer linear programming-based optimization model. The proposed model judiciously exploits flexibility of IP core routers, sliceable bandwidth variable transponders (SBVTs) and VERs to accommodate the traffic demands with the minimum power consumption (PC). Optical layer traffic grooming allows to simultaneously originate/terminate multiple lightpaths of different capacities, data slots and maximum transparent reach by a single SBVT. The proposed model also allows to use all functionalities of VER, such as simultaneous regeneration, distance-adaptive transmission option selection, frequency slot merging to be used concurrently for the given static traffic profile. In addition, the proposed model includes lifetime awareness of Erbium-doped fiber amplifier (EDFA) to reduce EDFA failure and associated repairing cost in long run. Using the proposed model, we enhance the average EDFA lifetime by restricting average EDFA occupancy, represented by the ratio of the (average) number of lightpaths being amplified in an EDFA and the maximum possible number of lightpaths that can be amplified in it, even though in the process, the overall PC in network may increase, with reference to the scenario with no EDFA occupancy restriction. The variation in PC and average EDFA lifetime for different permissible (user-defined) average EDFA occupancy are studied. We exhaustively study performance of the model under different network conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. In this paper, a fiber implies a bidirectional fiber (unless stated otherwise) representing two unidirectional fibers in opposite directions.

  2. As shown in Fig. 6, the minimum and maximum results for executions with different sets of traffic demands for each given ATD are shown in Figs. 7, 8, 9, 10, 11, 12 and 13.

  3. In this work, we do not consider the spectrum slot continuity and contiguity constraints to reduce computational complexity. The related constraints can be found in [9].

References

  1. Bouras, I., Figueiredo, R., Poss, M., Zhou, F.: Minimizing energy and link utilization in ISP backbone networks with multi-path routing: a bi-level approach. Optim. Lett. 14(1), 209–227 (2020)

    Article  MathSciNet  Google Scholar 

  2. Dharmaweera, M.N., Parthiban, R., Sekercioglu, Y.A.: Toward a power-efficient backbone network: the state of research. IEEE Commun. Surv. Tutor. 17(1), 198–227 (2015)

    Article  Google Scholar 

  3. Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009)

    Article  Google Scholar 

  4. Liu, S., Lu, W., Zhu, Z.: On the cross-layer orchestration to address IP router outages with cost-efficient multilayer restoration in IP-over-EONs. IEEE/OSA J. Opt. Commun. Netw. 10(1), A122–A132 (2018)

    Article  Google Scholar 

  5. CISCO VNI forecast, 2016-2021, [Online]. Available at: https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-widget/forecast-widget/advanced.html.Last. Accessed Nov. 6 (2019)

  6. Vizcaíno, J.L., Ye, Y., Monroy, I.T.: Energy efficiency analysis for flexible-grid OFDM-based optical networks. Comput. Netw. 56(10), 2400–2419 (2012)

    Article  Google Scholar 

  7. Zhang, G., De Leenheer, M., Mukherjee, B.: Optical traffic grooming in OFDM-based elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 4(11), B17–B25 (2012)

    Article  Google Scholar 

  8. Le, H.-C., Dang, N.T., Nguyen, N.D.: Impact of optical regeneration on dynamic elastic optical networks. In: IEEE International Conference on Advanced Technologies for Communications (ATC), pp. 11–15. IEEE (2017)

  9. Biswas, P., Adhya, A.: Energy-efficient network planning and traffic provisioning in IP-over-elastic optical networks. Optik-Int. J. Light Electron Opt. 185, 1115–1133 (2019)

    Article  Google Scholar 

  10. Jinno, M., Takara, H.: Elastic optical transponder and regenerator: toward energy and spectrum efficient optical transport networks. In: IEEE International Conference on Photonics in Switching (PS), pp. 1–3 (2012)

  11. Jinno, M., Yonenaga, K., Takara, H., Shibahara, K., Yamanaka, S., Ono, T., Kawai, T., Tomizawa, M., Miyamoto, Y.: Demonstration of translucent elastic optical network based on virtualized elastic regenerator. In: National Fiber Optic Engineers Conference, OSA, Optical Society of America, pp. 1–3 (2012)

  12. Zhao, Y., Chen, B., Zhang, J., Wang, X.: Energy efficiency with sliceable multi-flow transponders and elastic regenerators in survivable virtual optical networks. IEEE Trans. Commun. 64(6), 2539–2550 (2016)

    Article  Google Scholar 

  13. Biswas, P., Dey, S.K., Adhya, A.: Auxiliary graph based energy-efficient dynamic connection grooming for elastic optical networks. In: IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1–3 (2016)

  14. Wiatr, P., Monti, P., Wosinska, L.: Power savings versus network performance in dynamically provisioned WDM networks. IEEE Commun. Mag. 50(5), 48–55 (2012)

    Article  Google Scholar 

  15. Wiatr, P., Chen, J., Monti, P., Wosinska, L.: Energy efficiency versus reliability performance in optical backbone networks. IEEE/OSA J. Opt. Commun. Netw. 7(3), A482–A491 (2015)

    Article  Google Scholar 

  16. Arrhenius, S.: Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren. Z. Phys. Chem. 4(1), 226–248 (1889)

    Google Scholar 

  17. Coffin Jr., L.F.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. Am. Soc. Mech. Eng. 76, 931–950 (1954)

    Google Scholar 

  18. Manson, S.S.: Behavior of materials under conditions of thermal stress. NACA Report, p. 1170 (1954)

  19. Chiaraviglio, L., Wiatr, P., Monti, P., Chen, J., Lorincz, J., Idzikowski, F., Listanti, M., Wosinska, L.: Is green networking beneficial in terms of device lifetime? IEEE Commun. Mag. 53(5), 232–240 (2015)

    Article  Google Scholar 

  20. Wiatr, P., Yuan, D.: Reliability performance aware routing. In: IEEE International Workshop on Resilient Networks Design and Modeling (RNDM), pp. 1–6 (2018)

  21. Jinno, M., Takagi, T., Kiyokawa, K.: Minimal virtualized-elastic-regenerator placement and least congestion resources assignment for translucent elastic optical networks. In: Optical Fiber Communication Conference, IEEE/OSA, Optical Society of America (2015). Th3J-2

  22. Fallahpour, A., Beyranvand, H., Nezamalhosseini, S.A., Salehi, J.A.: Energy efficient routing and spectrum assignment with regenerator placement in elastic optical networks. IEEE J. Lightwave Technol. 32(10), 2019–2027 (2014)

    Article  Google Scholar 

  23. Klinkowski, M., Walkowiak, K.: On performance gains of flexible regeneration and modulation conversion in translucent elastic optical networks with superchannel transmission. IEEE J. Lightwave Technol. 34(23), 5485–5495 (2016)

    Article  Google Scholar 

  24. Walkowiak, K., Klinkowski, M., Lechowicz, P.: Dynamic routing in spectrally spatially flexible optical networks with back-to-back regeneration. IEEE/OSA J. Opt. Commun. Netw. 10(5), 523–534 (2018)

    Article  Google Scholar 

  25. Cavalcante, M.A., Pereira, H.A., Chaves, D.A., Almeida, R.C.: Evolutionary multiobjective strategy for regenerator placement in elastic optical networks. IEEE Trans. Commun. (2018)

  26. Wiatr, P., Chen, J., Monti, P., Wosinska, L., Yuan, D.: Routing and wavelength assignment vs. EDFA reliability performance in optical backbone networks: an operational cost perspective. Opt. Switch. Netw. 31, 211–217 (2019)

    Article  Google Scholar 

  27. Natalino, C., Chiaraviglio, L., Idzikowski, F., Wosinska, L., Monti, P.: Joint optimization of failure management costs, electricity costs, and operator revenue in optical core networks. IEEE Trans. Green Commun. Netw. 2(1), 291–304 (2018)

    Article  Google Scholar 

  28. Natalino, C., Chiaraviglio, L., Idzikowski, F., Francês, C.R., Wosinska, L., Monti, P.: Optimal lifetime-aware operation of green optical backbone networks. IEEE J. Sel. Areas Commun. 34(12), 3915–3926 (2016)

    Article  Google Scholar 

  29. Chiaraviglio, L., Amorosi, L., Dell’Olmo, P., Liu, W., Gutierrez, J.A., Cianfrani, A., Polverini, M., Le Rouzic, E., Listanti, M.: Lifetime-aware ISP networks: optimal formulation and solutions. IEEE/ACM Trans. Netw. 25(3), 1924–1937 (2017)

    Article  Google Scholar 

  30. Biswas, P., Adhya, A., Akhtar, S., Gupta, J., Majhi, S.: EDFA active-sleep transition frequency and EDFA occupancy aware dynamic traffic provisioning for energyefficient IP-over-EON. In: IEEE International Conferences on Signal Processing and Communication Systems (ICSPCS), pp. 1–7 (2019)

  31. Dey, S.K., Adhya, A.: IP-over-WDM network design methodology to improve efficiency in overall expenditure due to cost and energy consumption. IEEE/OSA J. Opt. Commun. Netw. 7(6), 563–577 (2015)

    Article  Google Scholar 

  32. Heddeghem, W.V., Idzikowski, F., Vereecken, W., Colle, D., Pickavet, M., Demeester, P.: Power consumption modeling in optical multilayer networks. Photonic Netw. Commun. 24(2), 86–102 (2012)

    Article  Google Scholar 

  33. Zhang, J., Zhao, Y., Yu, X., Zhang, J., Song, M., Ji, Y., Mukherjee, B.: Energy-efficient traffic grooming in sliceabletransponder—equipped IP-over-elastic optical networks [invited]. IEEE/OSA J. Opt. Commun. Netw. 7(1), A142–A152 (2015)

    Article  Google Scholar 

  34. Papanikolaou, P., Soumplis, P., Manousakis, K., Papadimitriou, G., Ellinas, G., Christodoulopoulos, K., Varvarigos, E.: Minimizing energy and cost in fixed-grid and flex-grid networks. IEEE/OSA J. Opt. Commun. Netw. 7(4), 337–351 (2015)

    Article  Google Scholar 

  35. Downs, R.: An optical amplifier pump laser reference design based on the AMC7820, Texas Instruments Application Report (2005)

  36. Yang, G., Smith, G.M., Davis, M.K., Loeber, D.A., Hu, M., Zah, C.-E., Bhat, R.: Highly reliable high-power 980-nm pump laser. IEEE Photon. Technol. Lett. 16(11), 2403–2405 (2004)

    Article  Google Scholar 

  37. Matuschek, N., Pliska, T., Troger, J., Mohrdiek, S., Schmidt, B.: Influence of thermal effects on the performance of high-power semiconductor lasers and pump-laser modules, semiconductor lasers and laser dynamics II. Int. Soc. Opt. Photon. 6184, 618402 (2006)

    Google Scholar 

  38. NKN brochure, [Online]. Available at http://nkn.gov.in/documents/NKN_Brochure.pdf

Download references

Acknowledgements

This publication is an outcome of the R&D work undertaken project under the Visvesvaraya PhD Scheme of Ministry of Electronics and Information Technology, Government of India, being implemented by Digital India Corporation (Unique Awardee No. MEITY-PHD-1183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramit Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, P., Adhya, A. Energy-efficient, EDFA lifetime-aware network planning along with virtualized elastic regenerator placement for IP-over-EON. Photon Netw Commun 41, 119–135 (2021). https://doi.org/10.1007/s11107-020-00919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00919-3

Keywords

Navigation