Skip to main content
Log in

MUX/DEMUX circuit using plasmonic antennas for LiFi and WiFi uplink and downlink transmission

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A microring-embedded Mach–Zehnder interferometer (MZI) system is proposed to form the multiplexing (demultiplexing) for wireless and light fidelity (WiFi and LiFi) uplink and downlink transmission. The system consists of two center microrings at the transmitter and a center microring at the receiver with two small rings along the sides of the center microrings. The whispering-gallery mode (WGM) is formed by the nonlinearity effect induced by the two small rings with suitable parameters. The embedded gold gratings are excited by the WGM, where the plasmon oscillation and electron density are obtained. All possible multiplexing/demultiplexing (MUX/DEMUX) schemes based on space–time input can be applied. The transmission is performed using the tested node. The uplink and downlink input source wavelengths of 1.10 µm and 1.30 µm for LiFi and WiFi are manipulated. The manipulated tested node is employed with a maximum length of 1, 000 km away from the transmitted point via a fiber optic cable. The results obtained have shown that the optimum transmission bit rate of 2.52 Petabit \({s}^{-1}\) with the optimum bit error rate (BER) of 0.38 is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Martinez, A., Sanchis, P., Marti, J.: Mach-Zehnder interferometers in photonic crystals. Opt. Quant. Electron. 37, 77–93 (2005)

    Article  Google Scholar 

  2. Singh, S., Singh, S.: Design of optical wavelength conversion based on cross polarization modulation effect of SOA-MZI. Opt. Quant. Electron. 52, 122 (2020)

    Article  Google Scholar 

  3. Guo, Z., Lu, L., Zhou, L., Shen, L., Chen, J.: 16 x 16 silicon optical switched based on dual-ring assisted Mach-Zehnder interferometers. J. Light wave Technol. 36(2), 225–232 (2018)

    Article  Google Scholar 

  4. Mendez-Astudillo, M., Okamoto, M., Ito, Y., Kita, T.: Compact thermo-optic MZI switch in silicon-on-insulator using direct carrier injection. Opt. Exp. 27(2), 899–906 (2019)

    Article  Google Scholar 

  5. Singh, P., Tripathi, K.D., Jaiswal, S., Dixit, H.K.: Design of all-optical buffer and OR gate using SOA-MZI. Opt. Quant. Electron. 46, 1435–1444 (2013)

    Article  Google Scholar 

  6. Soltanian, M.R.K., Amiri, I.S., Arianejad, M.M., Ahmad, H., Yupapin, P.: A simple humidity sensor utilizing air-gap as sensing part of the Mach-Zehnder interferometer. Opt. Quant. Electron. 49, 308 (2017)

    Article  Google Scholar 

  7. Wang, R., Zheng, C.-T., Liang, L., Ma, C.-H., Cui, Z.-C., Zhang, D.-M.: Multifunctional spectrum-periodic polymer MZI electro-optic switch/filter using serial-cascaded phase-generating couplers: theory, design and analysis. Opt. Quant. Electron. 44, 337–354 (2012)

    Article  Google Scholar 

  8. Lima, A.W., Jr., Sombra, A.S.B.: Graphene-based Mach-Zehnder nanophotonics interferometer working as a splitter/switch and as a multiplexer/demultiplexer. Opt. Quant. Electron. 49, 388 (2017)

    Article  Google Scholar 

  9. Kolesik, M., Matus, M., Moloney, J.V.: All-optical Mach-Zehnder-interferomter-based demultiplexier—a computer simulation study. IEEE Photon. Technol. Lett. 15(1), 78–80 (2003)

    Article  Google Scholar 

  10. Meijerink, A., Roeloffzen, C.G.H., Meijerink, R., Zhuang, L., Marpaung, D.A.I., Bentum, M.J., Burla, M., Verpoorte, J., Jorna, P., Hulzinga, A., Etten, W.V.: Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part I: design and performance analysis. J. Lightw. Technol. 28, 1 (2010)

    Article  Google Scholar 

  11. Chantakit, T., Chiangga, S., Amiri, I.S., Yupapin, P.: All-optical wireless wavelength multiplexing and demultiplexing using resonant cavity. Appl. Opt. 57(27), 7997 (2018)

    Article  Google Scholar 

  12. Badraoui, N., Berceli, T.: Enhancing capacity of optical links using polarization multiplexing. Opt. Quant. Electron. 51, 310 (2019)

    Article  Google Scholar 

  13. Lan, M., Yu, S., Cai, S., Gao, L., Gu, W.: Mode multiplexer/demultiplexer based on tapered multi-core fiber. IEEE Photon. Technol. Lett. 29(12), 979–982 (2017)

    Article  Google Scholar 

  14. Mukherjee, K.: Method of implementation and application of all-optical frequency-encoded multiplexer and demultiplexer utilizing total reflectional switches (TRSs). J. Opt. 49, 102–109 (2020)

    Article  Google Scholar 

  15. Prajzler, V., Mastera, R.: Wavelength division multiplexing module with large core optical polymer planar splitter and multi-layered dielectric filters. Opt. Quant. Electron. 49, 133 (2017)

    Article  Google Scholar 

  16. Perlicki, K.: Polarization division multiplexing system quality in the presence of polarization effects. Opt. Quant. Electron. 41, 997–1006 (2009)

    Article  Google Scholar 

  17. Sung, J.Y., Hsu, C.W., Su, H.Q., Chow, C.W., Yeh, C.H.: Optical filter analyses for demultiplexing all-optical OFDM transmission systems. Opt. Quant. Electron. 47, 2781–2792 (2015)

    Article  Google Scholar 

  18. Malhotra, Y., Kaler, R.S.: Optical time division multiplexing at 160 Gbps using MZI switching. Optik 122, 1981–1984 (2011)

    Article  Google Scholar 

  19. Heish, C.-H., Lin, K.-P., Leou, K.-C.: Design of a compact high performance electro-optic plasmonic switch. IEEE Photon. Technol. Lett. 27(23), 2473–2476 (2015)

    Article  Google Scholar 

  20. Sutili, T., Rocha, P., Gallep, C.M., Conforti, E.: Energy efficient switching technique for high-speed electro-optical semiconductor optical Amplifiers. J. Lightw. Technol. 37(24), 6015–6024 (2019)

    Article  Google Scholar 

  21. Ying, Z., Dhar, S., Zhao, Z., Feng, C., Mital, R., Chung, C.-J., Pan, D.J., Soref, R., Chen, T.R.: Eelctro-optic ripple carry adder in integrated silicon photonics for optical computing. IEEE J. Sel. Top. Quant. Electron. 24(6), 1–10 (2018)

    Article  Google Scholar 

  22. Chaudhary, S., Thakur, D., Sharma, A.: 10 Gbps-60GHz RoF transmission system for 5G applications. J. Opt. Commun. 40(3), 281–284 (2017)

    Article  Google Scholar 

  23. Islam, T., Uddin, M.N.: High Speed OTDM- DWDM bit compressed network for long-haul communication. Aiub J. Sci. Eng. 18(02), 57–65 (2019)

    Google Scholar 

  24. Garhwal, A., Arumona, A.E., Youplao, P., Ray, K., Amiri, I.S., Yupapin, P.: Human-like stereo sensors using plasmonic antenna embedded MZI with space–time modulation control. Chin. Opt. Lett. 19(10), 101301–101309 (2021)

    Article  Google Scholar 

  25. Li, X., Feng, X., Cui, K., Liu, F., Huang, Y.: Integrated silicon modulator based on microring array assisted MZI. Opt. Lett. 22(9), 10550–10558 (2014)

    Google Scholar 

  26. Sarapat, N., Pornsuwancharoen, N., Youplao, P., Amiri, I.S., Jalil, M.A., Ali, J., Singh, G., Yupapin, P., Grattan, K.T.: LiFi up-downlink conversion node model generated by inline successive optical pumping. Microsyst. Technol. 25, 945–950 (2019)

    Article  Google Scholar 

  27. Punthawanunt, S., Aziz, M.S., Phatharacorn, P., Chiangga, S., Ali, J., Yupapin, P.: LiFi cross-connection node model using whispering gallery mode of light in a microring resonator. Microsyst. Technol. 24, 4833–4838 (2018)

    Article  Google Scholar 

  28. Pornsuwancharoen, N., Youplao, P., Aziz, M.A., Ali, J., Singh, G., Amiri, I.S., Punthawanunt, S., Yupapin, P.: Characteristics of microring circuit using plasmonic island driven electron mobility. Microsyst. Technol. 24, 3573–3577 (2018)

    Article  Google Scholar 

  29. Bahadoran, M., Amiri, I.S.: Double critical coupled ring resonator-based add-drop filters. J. Theor. Appl. Phys. 13, 213–220 (2019)

    Article  Google Scholar 

  30. Youplao, P., Sarapat, N., Pornsuwancharoen, N., Chaiwong, K., Jalil, M.A., Amiri, I.S., Ali, J., Aziz, M.S., Chiangga, S., Singh, G., Yupapin, P., Grattan, K.T.V.: Plasmonic op-amp circuit model using the inline successive microring pumping scheme. Microsyst. Technol. 24, 3689–3695 (2018)

    Article  Google Scholar 

  31. Zheng, Y., Wu, Z., Shum, P.P., Xu, Z., Keiser, G., Humbert, G., Zhang, H., Zeng, S., Dinh, X.Q.: Sensing and lasing applications of whispering gallery mode microresonators. Opt. Electr. Adv. 1(9), 1800 (2018)

    Google Scholar 

  32. Mitatha, S., Pornsuwancharoen, N., Yupapin, P.P.: A simultaneous short-wave and millimeter-wave generation using a soliton pulse within a nano-waveguide. IEEE Photon. Technol. Lett. 21, 932–934 (2009)

    Article  Google Scholar 

  33. Mitatha, S., Piyatamrong, B., Tamee, K., Yupapin, P.P.: Multifunction sensors using coincidence dark-bright soliton pair in a MZI. IEEE Sens. J. 12(5), 984–987 (2011)

    Article  Google Scholar 

  34. Arumona, A.E., Amiri, I.S., Yupapin, P.: Plasmonic micro-antenna characteristics using gold grating embedded in a panda-ring circuit. Plasmonics 15, 279–285 (2020)

    Article  Google Scholar 

  35. Garhwal, A., Ray, K., Arumona, A.E., Bharti, G.K., Amiri, I.S., Yupapin, P.: Spin-wave generation using MZI embedded plasmonic antenna for quantum communications. Opt. Quant. Electron. 52, 241 (2020)

    Article  Google Scholar 

  36. Arumona, A.E., Amiri, I.S., Punthawanunt, S., Yupapin, P.: High-density quantum bits generation using microring plasmonic antenna. Opt. Quant. Electron. 52, 208 (2020)

    Article  Google Scholar 

  37. Arumona, A.E., Amiri, I.S., Punthawanunt, S., Ray, K., Yupapin, P.: Electron density transport using microring circuit for dual-mode power transmission. Opt. Quant. Electron. 52, 213 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the research facilities from Ton Duc Thang University, Vietnam.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AG contributed to MATLAB results improvement, review and editing, and discussion; AEA contributed to graphic improvement and discussion; KR contributed to modeling, analysis, discussion, and final editing, PYo contributed to validation, comparing Optiwave and MATLAB results, visualization, and discussion; SP contributed to discussion and English polishing; PYu contributed to conceptualization, supervision, review, editing and submission. All authors have read through the manuscript.

Corresponding authors

Correspondence to K. Ray or P. Yupapin.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Consent to participate

All authors are pleased to participate in this article.

Consent to publish

All authors give consent to publish this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garhwal, A., Arumona, A.E., Ray, K. et al. MUX/DEMUX circuit using plasmonic antennas for LiFi and WiFi uplink and downlink transmission. Photon Netw Commun 43, 147–155 (2022). https://doi.org/10.1007/s11107-021-00959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-021-00959-3

Keywords

Navigation