Skip to main content
Log in

A number-theoretic framework for the mitigation of fragmentation loss in elastic optical links

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper addresses the problem of minimizing total slot idle time in assigning spectrum to a 2-class traffic, considering both incremental and dynamic arrival and permanence rules. Deadlock avoidance under incremental traffic is first shown to be possible with the use of non-greedy spectrum assignment policies in some link states which are identified from knowledge of the connection request sizes, thus keeping total idleness finite and minimal. Then, the concept of deadlock avoidance is extended to dynamic traffic with the purpose of proposing an algorithm that mitigates fragmentation losses with appropriate greedy traffic-aware assignment policies. Since deadlock is not permanent under dynamic traffic, avoidance by assignment denial is not used. Instead, the proposed algorithm is only reluctant to assign dysfunctional, deadlock-prone voids in favour of functional voids if they are available. Other priorities may also apply if multiple searches are allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Jinno, M., et al.: Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies. IEEE Comm. Mag. 47(11), 66–73 (2009)

    Article  Google Scholar 

  2. Gerstel, O., Jinno, M., Lord, A., Yoo, S.J.B.: Elastic optical networking: a new dawn for the optical layer? IEEE Comm. Mag. 50(2), s12–s20 (2012)

    Article  Google Scholar 

  3. Ellis, A.D., Suibhne, N.M., Saad, D., Payne, D.N.: Communication networks beyond the capacity crunch philosophical transactions of the royal society. Phil. Trans. R. Soc. A 374, 20150191 (2016). https://doi.org/10.1098/rsta.2015.0191

    Article  Google Scholar 

  4. Chraplivy, A.: The coming capacity crunch. In: Proc. 35th European Conf. on Optical Communications, Vienna, Austria, pp. 20–24 (2009)

  5. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

  6. Tomkos, I., Azodolmolky, S., Solé-Pareta, J., Careglio, D., Palkopoulou, E.: A Tutorial on the flexible networking paradigm: state of the art, trends, and research challenges. Proc. IEEE 102(9), 1317–1337 (2014)

    Article  Google Scholar 

  7. Waldman, H., Almeida, R. C., Assis, K. D. R., & Bortoletto, R. C.: Spectrum-sliced elastic optical networking. In: 2013 15th International Conference on Transparent Optical Networks (ICTON) (pp. 1–4).

  8. Waldman, H., Almeida Jr., R.C.A., Bortoletto, R.C., Assis, K.D.R.: Deadlock Avoidance under Incremental Traffic in the Elastic Single Link. In: 16th International Conference on Transparent Optical Networks (ICTON 2014), Graz, Austria (2014)

  9. Bórquez-Paredes, D., Beghelli, A., Leiva, A., Murrugarra, R.: Does fragmentation avoidance improve the performance of dynamic spectrum allocation in elastic optical networks? Photon Netw. Commun. 35(3), 287–299 (2018)

    Article  Google Scholar 

  10. Chatterjee, B.C., Eiji, O.: Elastic optical networks: fundamentals, design, control, and management. CRC Press, Florida (2020)

    Book  Google Scholar 

  11. Wang, R., Mukherjee, B.: Spectrum management in heterogeneous bandwidth optical networks. Opt. Switch. Netw. 11, 83–91 (2014)

    Article  Google Scholar 

  12. Rosa, A., Cavdar, C., Carvalho, S., Costa, J. and Wosinska, L.: Spectrum allocation policy modeling for elastic optical networks. In: High Capacity Optical Networks and Emerging/Enabling Technologies (pp. 242–246). IEEE (2012)

  13. Almeida, R. C., Delgado, R. A., Bastos-Filho, C. J. A., Chaves, D. A. R., Pereira, H. A., Martins-Filho, J. F.: An evolutionary spectrum assignment algorithm for Elastic Optical Networks. In: 2013 15th International Conference on Transparent Optical Networks (ICTON), 2013, pp. 1–3. https://doi.org/10.1109/ICTON.2013.6602858.

  14. Rodrigo Campos Bortoletto. Métodos Analíticos para o Estudo do Desempenho de Redes Ópticas Elásticas (in Portuguese). Ph.D. Thesis - Universidade Federal do ABC (UFABC), (2020)

  15. Sutton, R.S., Barto, A.G.: Reinforcement learning. An introduction, 2nd edn. The MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  16. Waldman, H., Almeida, R.C., Bortoletto, R.C.: Spectral idleness minimization in the elastic single link under incremental traffic. IEEE Latin-Am. Conf Commun. (LATINCOM) (2019). https://doi.org/10.1109/LATINCOM48065.2019.8937937

    Article  Google Scholar 

  17. Jones, G. A., Jones, J. M.: Bezout's Identity. §1.2 in Elementary Number Theory. Berlin: Springer-Verlag, pp. 7–11, (1998)

  18. André L. N. de Souza. Seleção de Parâmetros de Transmissão para Redes Ópticas com Transceptores com Taxa de Código Variável. M. Sc. Dissertation (in Portuguese) - Universidade Estadual de Campinas (Unicamp), Brazil, (2018)

  19. Souza, A.L.N., et al.: Parameter selection in optical networks with variable-code-rate superchannels. J. Opt. Commun. Netw. 8(7), A152–A161 (2016). https://doi.org/10.1364/JOCN.8.00A152

    Article  Google Scholar 

  20. Kumar, A., Manjunath, D., Kuri, J.: Communication Networking: an Analytical Approach. Morgan Kaufmann Publishers, Elsevier Inc. (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helio Waldman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waldman, H., Almeida, R.C., Bortoletto, R.C. et al. A number-theoretic framework for the mitigation of fragmentation loss in elastic optical links. Photon Netw Commun 43, 85–99 (2022). https://doi.org/10.1007/s11107-022-00962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-022-00962-2

Keywords

Navigation