Abstract
With the success of commercial spaceflights, space information infrastructure (SII) has received much attention in recent years. Blueprints such as the low earth orbit global communication network and the data center in space have been proposed. To these ends, a satellite backbone network (SBN) is an essential part of SII and can connect multiple heterogeneous space networks, provide high-throughput connections for other space information devices, and even provide space computing power. To obtain ultra-high bandwidth and resource flexibility over limited channels, we propose a timeslot-based optical switched SBN (OSBN). More specifically, we show the node structure, switching system and bandwidth-on-demand (BoD) mechanism of the proposed OSBN. By simulation, we analyze the OSBN’s performances under different designed parameters and suggest the best ones. In addition, the BoD mechanism is verified to enhance differentiated service-of-quality. Experimentally, we demonstrate the access and handover processing of OSBN. Additionally, we analyze the performance of space computing over an imitated OSBN platform.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11107-022-00972-0/MediaObjects/11107_2022_972_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11107-022-00972-0/MediaObjects/11107_2022_972_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11107-022-00972-0/MediaObjects/11107_2022_972_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11107-022-00972-0/MediaObjects/11107_2022_972_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11107-022-00972-0/MediaObjects/11107_2022_972_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11107-022-00972-0/MediaObjects/11107_2022_972_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11107-022-00972-0/MediaObjects/11107_2022_972_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11107-022-00972-0/MediaObjects/11107_2022_972_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11107-022-00972-0/MediaObjects/11107_2022_972_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11107-022-00972-0/MediaObjects/11107_2022_972_Fig10_HTML.png)
Similar content being viewed by others
Code availability
The code used in the current study is available from the corresponding author on reasonable request.
Materials availability
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
References
Kodheli, O., et al.: Satellite communications in the new space era: a survey and future challenges. In: IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 70–109. Firstquarter (2021)
Yao, H., Wang, L., Wang, X., Lu, Z., Liu, Y.: The space-terrestrial integrated network: an overview. IEEE Commun. Mag. 56(9), 178–185 (2018)
Bai, L., de Cola, T., Yu, Q., Zhang, W.: Space information networks. IEEE Wirel. Commun. 26(2), 8–9 (2019)
Fogliati, V.: ISICOM: integrated space infrastructure for global communications. In: 4th Advanced Satellite Mobile Systems, vol. 2008, pp. 13–15 . Bologna (2008)
Sun, X., Cao, S.: A routing and wavelength assignment algorithm based on two types of LEO constellations in optical satellite networks. J. Lightwave Technol. 38(8), 2106–2113 (2020)
Lyras, N., Efrem, N., Kourogiorgas, I., Panagopoulos, A., Arapoglou, P.: Optimizing the ground network of optical MEO satellite communication systems. IEEE Syst. J. 14(3), 3968–3976 (2020)
Cao, X., Yang, P., Alzenad, M., Xi, X., Wu, D., Yanikomeroglu, H.: Airborne communication networks: a survey. IEEE J. Sel. Areas Commun. 36(9), 1907–1926 (2018)
“Starklink” from SpaceX [Online]. https://www.starlink.com/
“Space Communication and Navigation” from NASA [Online]. https://www.nasa.gov/directorates/heo/scan/explore
Earth and Space on AWS [Online]. https://www.protocol.com/newsletters/cloud/why-aws-wants-to-build-a-cloud-above-the-clouds?rebelltitem=4#rebelltitem4
Król, M., Mastorakis, S., Oran, D., Kutscher, D.: Compute first networking: distributed computing meets ICN. In: Proceedings of the 6th ACM Conference on Information-Centric Networking, pp. 67–77 (2019)
Zhao, J., Gao, F., Wu, Q., Jin, S., Wu, Y., Jia, W.: Beam tracking for UAV mounted SatCom on-the-move with massive antenna array. IEEE J. Sel. Areas Commun. 36(2), 363–375 (2018)
“ETS-9 Satellite Communications Project” from Japan [Online]. http://www2.nict.go.jp/spacelab/en/pj_ets9.html
Kopeikin, A., et al.: Dynamic mission planning for communication control in multiple unmanned aircraft teams. Unmanned Syst. 1(01), 41–58 (2013)
Huang, H., Guo, S., Wang, K.: Envisioned wireless big data storage for low-earth-orbit satellite-based cloud. IEEE Wirel. Commun. 25(1), 26–31 (2018)
Zheng, D., Li, Y., Chen, E., Li, B., Kong, D., Li, W., Wu, J.: Free-space to few-mode-fiber coupling under atmospheric turbulence. Opt. Express 24, 18739–18744 (2016)
Zheng, D., Li, Y., Zhou, H., Bian, Y., Yang, C., Li, W., Qiu, J., Guo, H., Hong, X., Zuo, Y., Giles, I., Tong, W., Wu, J.: Performance enhancement of free-space optical communications under atmospheric turbulence using modes diversity coherent receipt. Opt. Express 26, 28879–28890 (2018)
Karafolas, N., Baroni, S.: Optical satellite networks. J. Lightwave Technol. 18(12), 1792–1806 (2000)
Lluch, I., Grogan, P.T., Pica, U., Golkar, A.: Simulating a proactive ad-hoc network protocol for federated satellite systems. In: Proceedings of IEEE Aerospace Conference, pp. 1–16 (2015)
Di, B., Zhang, H., Song, L., Li, Y., Li, G.Y.: Ultra-dense LEO: integrating terrestrial-satellite networks into 5G and beyond for data offloading. IEEE Trans. Wirel. Commun. 18(1), 47–62 (2019)
Zheng, Y., Zhao, S., Liu, Y., Tan, Q., Li, Y., Jiang, Y.: Topology control in self-organized optical satellite networks based on minimum weight spanning tree. Aerosp. Sci. Technol. 69, 449–457 (2017)
Kedar, D., Arnon, S.: Backscattering-induced crosstalk in WDM optical wireless communication. J. Lightwave Technol. 23(6), 2023–2030 (2005)
Li, T., et al.: Optical burst switching based satellite backbone network. In: Fourth Seminar on Novel Optoelectronic Detection Technology and Application, vol. 10697, International Society for Optics and Photonics (2018)
Bao, J., et al.: OpenSAN: a software-defined satellite network architecture. ACM SIGCOMM Comput. Commun. Rev. 44(4), 347–348 (2014)
Chan, V.W.S.: Optical satellite networks. J. Lightwave Technol. 21(11), 2811–2827 (2003)
Tan, L., Yang, Q., Ma, J., Jiang, S.: Wavelength dimensioning of optical transport networks over nongeosychronous satellite constellations. J. Opt. Commun. Netw. 2, 166–174 (2010)
Papa, A., de Cola, T., Vizarreta, P., He, M., Mas-Machuca, C., Kellerer, W.: Design and evaluation of reconfigurable SDN LEO constellations. IEEE Trans. Netw. Serv. Manag. 17(3), 1432–1445 (2020)
Wu, Z., et al.: A graph-based satellite handover framework for LEO satellite communication networks. IEEE Commun. Lett. 20(8), 1547–1550 (2016)
Tsunoda, H., Ohta, K., Kato, N., Nemoto, Y.: Supporting IP/LEO satellite networks by handover-independent IP mobility management. IEEE J. Sel. Areas Commun. 22(2), 300–307 (2004)
Yan, L., Ding, X., Zhang, G.: Dynamic channel allocation aided random access for SDN-enabled LEO satellite IoT. J. Commun. Inf. Netw. 6(2), 134–141 (2021)
Yiqing, L., Yuqing, L., Xiaoying, G., Jingchao, W., Youyun, X., Xinbing, W.: Markov approximation for multilayered selection in satellite network. J. Commun. Inf. Netw. 1(3), 23–31 (2016)
Jiang, C., Zhu, X.: Reinforcement learning based capacity management in multi-layer satellite networks. IEEE Trans. Wireless Commun. 19(7), 4685–4699 (2020)
Deng, C., Guo, W., Weisheng, H., Zhu, W., Zhou, B.: Algorithm for the lightpath reservation provisioning of data relay services in a GEO network. J. Opt. Commun. Netw. 9, 658–668 (2017)
Qiao, C., Yoo, M.: Optical burst switching (OBS)—a new paradigm for an optical internet. J. High Speed Netw. 8(1), 69–84 (1999)
Chawathe, S.: Analysis of burst header packets in optical burst switching networks. In: IEEE 17th International Symposium on Network Computing and Applications (NCA), pp. 1–5. Cambridge, MA (2018)
Vargas, T., Guerri, J., Sales, S.: Optimal configuration for size-based burst assembly algorithms at the edge node for video traffic transmissions over OBS networks. In: 2008 10th Anniversary International Conference on Transparent Optical Networks, Athens, pp. 130-133 (2008)
Yan, F., et al.: Method and Device for Processing Service Crossing Master Node. U.S. Patent Application No. 15/021,424
Chen, X., et al.: Dynamic bandwidth scheduling method and device, and computer storage medium. U.S. Patent No. 9,755,980. 5, (2017)
Gauger, C., et al.: Optical burst transport network (OBTN)—a novel architecture for efficient transport of optical burst data over lambda grids. In: Workshop on High Performance Switching and Routing, pp. 58–62 (2005)
OPNET [Online]. https://opnetprojects.com/opnet-network-simulator/
Zhang, D., et al.: Analysis and experimental demonstration of an optical switching enabled scalable data center network architecture. Opt. Switch. Netw. 23, 205–214 (2017)
Zhang, D., et al.: Optical switching based small-world data center network. Comput. Commun. 103, 153–164 (2017)
Chowdhury, M., et al.: Efficient coflow scheduling with varys. In: Proceedings of the 2014 ACM Conference on SIGCOMM, pp. 443–454 (2014)
Dean, J., Sanjay, G.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)
Li, M., et al.: Scaling distributed machine learning with the parameter server. In: 11th USENIX Symposium on Operating Systems Design and Implementation, pp. 583–598 (2014)
Hadoop [Online]. https://hadoop.apache.org/
Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite: characterization of the mapreduce-based data analysis. In: 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010), Long Beach, CA, pp. 41–51 (2010)
Torch [Online]. https://pytorch.org/
Horovod [Online]. https://github.com/horovod/horovod
CNN ML job [Online]. https://github.com/google/n-digit-mnist
Funding
Not applicable.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Not applicable.
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, C., Yoshikane, N., Guo, H. et al. OSBN: architecture and control mechanism of optical switched satellite backbone network. Photon Netw Commun 43, 165–176 (2022). https://doi.org/10.1007/s11107-022-00972-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-022-00972-0