Skip to main content
Log in

Using a nanoscale technology for designing fault-tolerant 2:1 multiplexer based on a majority gate

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In today’s environment, digital technology and digital computing are unavoidable components of the creation of electronic gadgets. Quantum-dot cellular automata, or QCA, is a new paradigm for realizing digital logic on the nanoscale. QCA technology is a type of nanotechnology that is used to construct computational circuits. Due to its low latency and area consumption, it can be a promising technique for overcoming CMOS limitations at the nanoscale. Also, fault-tolerant circuits ensure circuit resilience using dependable circuits in this technology. The multiplexer is one of the essential circuits in computer logic. In the most widely used circuits, the multiplexer is an important and primary component. Therefore, in this paper, using the micro-level polarization of QCA, we attempt to develop a fault-tolerant multiplexer architecture. The study employs fault-tolerant majority gates to create a fault-tolerant 2:1 multiplexer. QCADesigner develops and simulates the proposed multiplexer. The results indicate the efficiency of the proposed design in comparison with other designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yazdeen, A.A., Zeebaree, S.R., Sadeeq, M.M., Kak, S.F., Ahmed, O.M., Zebari, R.R.: FPGA implementations for data encryption and decryption via concurrent and parallel computation: a review. Qubahan Acad. J. 1(2), 8–16 (2021)

    Article  Google Scholar 

  2. Xu, K.: Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems. J. Micromech. Microeng. 31(5), 054001 (2021)

    Article  Google Scholar 

  3. Isaac, R.D.: The future of CMOS technology. IBM J. Res. Dev. 44(3), 369–378 (2000)

    Article  Google Scholar 

  4. Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)

    Article  Google Scholar 

  5. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  Google Scholar 

  6. Seyedi, S., Navimipour, N.J., Otsuki, A.: Design and analysis of fault-tolerant 1: 2 demultiplexer using quantum-dot cellular automata nano-technology. Electronics 10(21), 2565 (2021)

    Article  Google Scholar 

  7. Seyedi, S., Otsuki, A., Navimipour, N.J.: A new cost-efficient design of a reversible gate based on a nano-scale quantum-dot cellular automata technology. Electronics 10(15), 1806 (2021)

    Article  Google Scholar 

  8. Afrooz, S., Navimipour, N.J.: An effective nano design of demultiplexer architecture based on coplanar quantum-dot cellular automata. IET Circuits Devices Syst. 15(2), 168–174 (2021)

    Article  Google Scholar 

  9. Hasani, B., Navimipour, N.J.: A new design of a carry-save adder based on quantum-dot cellular automata. Iran. J. Sci. Technol. Trans. Electr. Eng. 45(3), 993–999 (2021)

    Article  Google Scholar 

  10. Sheibani, H., Rahimi, E.: Single-electron fault tolerance in quantum cellular automata majority gate. J. Circuits Syst. Comput. 30(09), 2150168 (2021)

    Article  Google Scholar 

  11. Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019)

    Article  Google Scholar 

  12. Foroutan, S.A.H., Sabbaghi-Nadooshan, R., Mohammadi, M., Tavakoli, M.B.: Investigating multiple defects on a new fault-tolerant three-input QCA majority gate. J. Supercomput. 30(09), 2150168 (2021)

    Google Scholar 

  13. Taheri, Z., Rezai, A., Rashidi, H.: Novel single layer fault tolerance RCA construction for QCA technology. Facta Univ.-Ser.: Electron. Energ. 32(4), 601–613 (2019)

    Article  Google Scholar 

  14. Naz, S.F., Ahmed, S., Ko, S.B., Shah, A.P., Sharma, S.: QCA based cost efficient coplanar 1× 4 RAM design with set/reset ability. Int. J. Numer. Modell.: Electron. Netw. Devices Fields 35(1), e2946 (2021)

    Google Scholar 

  15. Song, Z., Xie, G., Cheng, X., Wang, L., Zhang, Y.: An ultra-low cost multilayer RAM in quantum-dot cellular automata. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3397–3401 (2020)

    Google Scholar 

  16. Sasamal, T.N., Singh, A.K., Ghanekar, U.: Design and implementation of QCA D-flip-flops and RAM cell using majority gates. J. Circuits Syst. Comput. 28(05), 1950079 (2019)

    Article  Google Scholar 

  17. Heydari, M., Xiaohu, Z., Lai, K.K., Afro, S.: A cost-aware efficient RAM structure based on quantum-dot cellular automata nanotechnology. Int. J. Theor. Phys. 58(12), 3961–3972 (2019)

    Article  Google Scholar 

  18. Khosroshahy, M.B., Moaiyeri, M.H., Navi, K., Bagherzadeh, N.: An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results Phys. 7, 3543–3551 (2017)

    Article  Google Scholar 

  19. Chaharlang, J. Mosleh, M.: An overview on RAM memories in QCA technology. Majlesi J. Electr. Eng., vol. 11, no. 2 (2017)

  20. Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)

    Article  Google Scholar 

  21. Dehkordi, M.A., Shamsabadi, A.S., Ghahfarokhi, B.S., Vafaei, A.: Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron. J. 42(5), 701–708 (2011)

    Article  Google Scholar 

  22. Seyedi, S., Navimipour, N.J.: Designing a three-level full-adder based on nano-scale quantum dot cellular automata. Photonic Netw. Commun., 2021/10/26 2021

  23. Debnath, B, Das, J.C., De, D.: SQCA: symmetric key-based crypto-codec for secure nano-communication using QCA. Photonic Netw. Commun., 2021/10/27 2021

  24. Wu, L., Shen, Z., Ji, Y.: Using nano-scale QCA technology for designing fault-tolerant 2: 1 multiplexer. Analog Integr. Circuits Signal Process. 109(3), 553–562 (2021)

    Article  Google Scholar 

  25. Ahmed, S., Naz, S.F., Sharma, S., Ko, S.B.: Design of quantum-dot cellular automata-based communication system using modular N-bit binary to gray and gray to binary converters. Int. J. Commun. Syst. 34(4), e4702 (2021)

    Article  Google Scholar 

  26. Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis. J. Supercomput. 78(2), 1672–1695 (2021)

    Article  Google Scholar 

  27. Akbari-Hasanjani, R., Sabbaghi-Nadooshan, R.: Design and simulation of innovative QCA quaternary logic gates. Adv. Theory Simul. 4(9), 2100069 (2021)

    Article  Google Scholar 

  28. Khan, A., Arya, R.: Towards cost analysis and energy estimation of simple multiplexer and demultiplexer using quantum dot cellular automata. Int. Nano Lett. 12(1), 67–77 (2021)

    Article  Google Scholar 

  29. Seyedi, S., Navimipour, N.J.: A fault-tolerance nanoscale design for binary-to-gray converter based on QCA. IETE J. Res. (2021). https://doi.org/10.1080/03772063.2021.1908857

    Article  MATH  Google Scholar 

  30. Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata. Comput. Electr. Eng. 82, 106548 (2020)

    Article  Google Scholar 

  31. Poorhosseini, M., Hejazi, A.R.: A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J. Circuits Syst. Comput. 27(07), 1850115 (2018)

    Article  Google Scholar 

  32. Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: Defects and faults in quantum cellular automata at nano scale. In: 22nd IEEE VLSI Test Symposium, 2004. Proceedings, pp. 291–296. IEEE (2004)

  33. Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun. Netw. 16, 1–9 (2018)

    Article  Google Scholar 

  34. Azimi, S., Angizi, S., Moaiyeri, M.H.: Efficient and robust SRAM cell design based on quantum-dot cellular automata. ECS J. Solid State Sci. Technol. 7(3), Q38 (2018)

    Article  Google Scholar 

  35. Reshi, J.I., Banday, M.T.: Efficient design of nano scale adder and subtractor circuits using quantum dot cellular automata (2016)

  36. Deng, F., Xie, G., Zhang, Y., Peng, F., Lv, H.: A novel design and analysis of comparator with XNOR gate for QCA. Microprocess. Microsyst. 55, 131–135 (2017)

    Article  Google Scholar 

  37. Raj, M., Gopalakrishnan, L.: Novel reliable QCA subtractor designs using Clock zone based crossover. In: 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 497–501. IEEE (2019)

  38. Alamdar, H., Ardeshir, G., Gholami, M.: Using universal nand-nor-inverter gate to design D-latch and D flip-flop in quantum-dot cellular automata nanotechnology. Int. J. Eng. 34(7), 1710–1717 (2021)

    Google Scholar 

  39. Zhang, Y., Deng, F., Cheng, X., Xie, G.: A coplanar XOR using NAND-NOR-inverter and five-input majority voter in quantum-dot cellular automata technology. Int. J. Theor. Phys. 59(2), 484–501 (2020)

    Article  MATH  Google Scholar 

  40. Safoev, N., Jeon, J.-C.: A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron. Eng. 222, 111197 (2020)

    Article  Google Scholar 

  41. Momenzadeh, M., Huang, J., Tahoori, M.B., Lombardi, F.: Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(12), 1881–1893 (2005)

    Article  Google Scholar 

  42. Ni, T., Liu, D., Xu, Q., Huang, Z., Liang, H., Yan, A.: Architecture of cobweb-based redundant TSV for clustered faults. IEEE Trans. Very Large Scale Integr. Syst. 28(7), 1736–1739 (2020)

    Article  Google Scholar 

  43. Feng, Y., et al.: A 200–225-GHz manifold-coupled multiplexer utilizing metal waveguides. IEEE Trans. Microw. Theory Tech. 69(12), 5327–5333 (2021)

    Article  Google Scholar 

  44. Ahmadpour, S.S., Mosleh, M.: A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology. Concurr. Comput.: Pract. Exp. 32(5), e5548 (2020)

    Article  Google Scholar 

  45. Majeed, A.H., AlKaldy, E., Albermany, S.: An energy-efficient RAM cell based on novel majority gate in QCA technology. SN Appl. Sci. 1(11), 1–8 (2019)

    Article  Google Scholar 

  46. Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Physica B 512, 91–99 (2017)

    Article  Google Scholar 

  47. Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: The design and implementation of a robust single-layer qca alu using a novel fault-tolerant three-input majority gate. J. Supercomput., pp. 1–31 (2020)

  48. Mukhopadhyay, D., Dinda, S., Dutta, P.: Designing and implementation of quantum cellular automata 2: 1 multiplexer circuit. Int. J. Comput. Appl. 25(1), 21–24 (2011)

    Google Scholar 

  49. Ahmadpour, S.-S., Mosleh, M.: A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J. Supercomput. 74(9), 4696–4716 (2018)

    Article  Google Scholar 

  50. Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)

    Article  Google Scholar 

  51. Jeon, J.-C.: Designing nanotechnology QCA–multiplexer using majority function-based NAND for quantum computing. J. Supercomput. 77, 1562–1578 (2021)

    Article  Google Scholar 

  52. Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A novel architecture for quantum-dot cellular automata multiplexer. Int. J. Comput. Sci. Issues, vol. 8, no. 1 (2011)

  53. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  54. Walus, K.: ATIPS Laboratory QCADesigner Homepage. ATIPS Laboratory, Univ. Calgary, Calgary, Canada, ed, 2002.

  55. Iqbal, J., Khanday, F., Shah, N.: Design of Quantum-dot Cellular Automata (QCA) based modular 2 n− 1− 2 n MUX-DEMUX. In: IMPACT-2013, pp. 189–193. IEEE (2013)

  56. Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014)

    Article  MATH  Google Scholar 

  57. Sen, B., Nag, A., De, A., Sikdar, B.K.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015)

    Article  Google Scholar 

  58. Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata (2017)

  59. Xingjun, L., Zhiwei, S., Hongping, C., Haghighi, M.R.J.: A new design of QCA-based nanoscale multiplexer and its usage in communications. Int. J. Commun Syst 33(4), e4254 (2020)

    Article  Google Scholar 

  60. Ahmadpour, S.-S., Mosleh, M.: New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Commun. Netw. 19, 10–25 (2019)

    Article  Google Scholar 

  61. Zhang, X., Tang, Y., Zhang, F., Lee, C.S.: A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongyi He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, R., Wang, X. & Gao, K. Using a nanoscale technology for designing fault-tolerant 2:1 multiplexer based on a majority gate. Photon Netw Commun 44, 52–59 (2022). https://doi.org/10.1007/s11107-022-00981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-022-00981-z

Keywords

Navigation