Skip to main content
Log in

Analytical solution for ginzburg–landau equation in discrete solitons laser arrays lattices via non-perturbation methods

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The Ginzburg–Landau equation (GLE) plays an important role in discrete solitons laser array lattices. In this manuscript, the analytical solution for GLE which is a discrete analogue of laser array using non-perturbation methods is represented. The laser array for stability analysis of time-dependent solution in terms of damping and coupling is investigated. Further, GLE equation for periodic travelling wave solution with homotopy perturbation method and variational iteration method is derived. These methods provide a straightforwardly computable, readily demonstrable and rapidly convergent solution. For the sake of the consistency, validation and effectiveness of these methods, a convergence of GLE has also been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Pottoo, S.N., Goyal, R., Gupta, A.: Development of 32‑GBaud DP‑QPSK free space optical transceiver using homodyne detection and advanced digital signal processing for future optical networks. Opt. Quantum Electron. 52(496), (2020)

  2. Goyal, R., Kaler, R.: A novel architecture of hybrid (WDM/TDM) passive optical networks with suitable modulation format. Opt. Fiber Technol. 18(6), 518–522 (2012)

    Article  Google Scholar 

  3. Goyal, R., Kaler, R.S.: Investigation on polarization dependent bidirectional hybrid (WDM/TDM) utilizing QAM modulation with different amplifiers. Optoelectron. Adv. Mater Rapid Commun. Natl. Inst. 8(8), 631–634 (2014)

    Google Scholar 

  4. Kumar, C., Goyal, R.: Analysis of proposed hybrid amplifier model for single to multi-channel WDM optical system at 10 Gbps with 100 GHz of channel spacing. Int. J. Inf. Technol. (in press) (2017)

  5. Wang, Z., Li, Te., Yang, G., Song, Y.: High power, high efficiency continuous-wave 808 nm laser diode arrays. Opt. Laser Technol. 97, 297–301 (2017)

    Article  Google Scholar 

  6. Li, J., Cao, J., Xu, X.: Effects of phase errors on phase locking of all-fiber laser arrays. Opt. Laser Technol. 47, 372–378 (2013)

    Article  Google Scholar 

  7. Guo, F., Dan, Lu., Zhang, R., Liu, S., Sun, M., Kan, Q., Ji, C.: A 1.3-μm four-channel directly modulated laser array fabricated by SAGUpper-SCH technology. Opt. Commun. 383, 577–580 (2017)

    Article  Google Scholar 

  8. Zhou, L., Duan, K.: Stability in a general coupled laser array. Optik 123, 2187–2190 (2012)

    Article  Google Scholar 

  9. Thomson, S.J., Durey, M., Rosales, R.R.: Discrete and periodic complex Ginzburg-Landau equation for a hydrodynamic active lattice. Phys. Rev. E 103, 062215 (2021)

    Article  MathSciNet  Google Scholar 

  10. Akram, G., Sadaf, M., Mariyam, H.: A comparative study of the optical solitons for the fractional complex Ginzburg–Landau equation using different fractional differential operators. Optik 256, 168626 (2022)

    Article  Google Scholar 

  11. Hennig, D., Karachalios, N.I.: Dynamics of nonlocal and local discrete Ginzburg–Landau equations: global attractors and their congruence. Nonlinear Anal. 215, 112647 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Neveen, G., Ahmed, H.E., El-Azabb, M.S., Obayya, S.S.A.: Pseudo-spectral approach for extracting optical solitons of the complex Ginzburg Landau equation with six nonlinearity forms”. Optik 254, 168662 (2022)

    Article  Google Scholar 

  13. Mukai, D.: Mirror symmetry of nonabelian Landau-Ginzburgorbifolds with loop type potentials. J. Geom. Phys. 159, 103877 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kudryashov, N.A.: First integrals and general solution of the complex Ginzburg–Landau equation. Appl. Math. Comput. 386, 125407 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Malomed, B.A.: New findings for the old problem: Exact solutions for domain walls in coupled real Ginzburg–Landau equations. Phys. Lett. A 422, 127802 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fan, J., Samet, B., Zhou, Y.: Uniform regularity for a 3D time-dependent Ginzburg–Landau model in superconductivity. Comput. Math. Appl. 75(9), 3244–3248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, L., Xueke, Pu.: Large deviations for stochastic 3D cubic Ginzburg–Landau equation with multiplicative noise. Appl. Math. Lett. 48, 41–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oskoee, E.N.: Computing properties of materials based on the Ginzburg-Landau equation. Comput. Sci. Eng. 9(2), 84–95 (2007)

    Article  Google Scholar 

  19. Rani, M., Bhatti, H.S., Singh, V.: Exact solitary wave solution for higher order nonlinear schrodinger equation using He’s variational iteration method. Opt. Eng. 56(11), 116103 (2017)

    Article  Google Scholar 

  20. Rani, M., Bhatti, H.S., Singh, V.: Performance analysis of spectral amplitude coding optical code division multiple access system using modified double weight codes with adomian decomposition method. J. Opt. Commun. 39(4), 1–8 (2017)

    Google Scholar 

  21. Tozar, A.: New analytical solutions of fractional complex Ginzburg–Landau equation. Univ. J. Math. Appl. 3(3), 129–132 (2020)

    Article  Google Scholar 

  22. Thomson, S.J., Durey, M., Rosales, R.R.: Discrete and periodic complex Ginzburg–Landau equation for a hydrodynamic active lattice. Phys. Rev. E 103, 062215 (2021)

    Article  MathSciNet  Google Scholar 

  23. Naghshband, S., Fariborzi Araghi, M.A.: Solving the cubic complex Ginzburg–Laundau equation by Homotopy analysis method. Indian J. Sci. Technol. 13(24), 2387–2403 (2020)

    Article  Google Scholar 

  24. Zhang, X., Chai, J., Huang, J., Chen, Z., Li, Y., Malomed, B.A.: Discrete solitons and scattering of lattice waves in guiding arrays with a nonlinear PT-symmetric defect. Opt. Express 22(11), 13927–13939 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Rani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, M., Singh, V. & Goyal, R. Analytical solution for ginzburg–landau equation in discrete solitons laser arrays lattices via non-perturbation methods. Photon Netw Commun 46, 108–111 (2023). https://doi.org/10.1007/s11107-023-01005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-023-01005-0

Keywords

Navigation