Skip to main content
Log in

Solution of variational dynamic problems under parametric uncertainty

  • Methods of Signal Processing
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

The paper deals with a number of variational dynamic problems with parameters subject to unknown smooth drift in time. Solution schemes are considered using both the classical variational method and reduction of the original problem to a conditional nonholonomic adaptive optimal control problem. In the second case, a solution is found with the help of the dynamic programming method and a specially chosen adjustment algorithm for unknown parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Grodzovskii, G.L., Ivanov, Yu.N., and Tokarev, V.V., Mekhanika kosmicheskogo poleta. Problemy optimizatsii (Spaceflight Mechanics. Optimization Problems), Moscow: Nauka, 1975.

    Google Scholar 

  2. Il’in, V.A. and Kuzmak, G.E., Optimal’nye perelety kosmicheskikh apparatov s dvigatelyami bol’shoi tyagi (Optimal Flights of Spacecrafts with High-Thrust Engines), Moscow: Nauka, 1976.

    Google Scholar 

  3. Okhotsimskii, D.E. and Sikharulidze, Yu.G., Osnovy mekhaniki kosmicheskogo poleta (Foundations of Spaceflight Mechanics), Moscow: Nauka, 1990.

    Google Scholar 

  4. Tertychnyi-Dauri, V.Yu., Adaptivnaya mekhanika (Adaptive Mechanics), Moscow: Nauka, Fizmatlit, 1998.

    Google Scholar 

  5. Tertychnyi-Dauri, V.Yu., Stokhasticheskaya mekhanika (Stochastic Mechanics), Moscow: Faktorial, 2001.

    Google Scholar 

  6. Young, L.C., Lectures on the Calculus of Variations and Optimal Control Theory, Philadelphia: Saunders, 1969. Translated under the title Lektsii po variatsionnomu ischisleniyu i teorii optimal’nogo upravleniya, Moscow: Mir, 1974.

    Google Scholar 

  7. El’sgol’ts, L.E., Differentsial’nye uravneniya i variatsionnoe ischislenie, Moscow: Nauka, 1969, 2nd ed. Translated under the title Differential Equations and the Calculus of Variations, Moscow: Mir, 1970.

    Google Scholar 

  8. Korn, G.A. and Korn, T.M., Mathematical Handbook for Scientists and Engineers, New York: McGraw-Hill, 1968. Translated under the title Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Moscow: Nauka, 1974.

    Google Scholar 

  9. Gabasov, R. and Kirillova, F.M., Kachestvennaya teoriya optimal’nykh protsessov, Moscow: Nauka, 1971. Translated under the title The Qualitative Theory of Optimal Processes, New York: Dekker, 1976.

    Google Scholar 

  10. Boltyanskii, V.G., Matematicheskie metody optimal’nogo upravleniya, Moscow: Nauka, 1969, 2nd ed. Translated under the title Mathematical Methods of Optimal Control, New York: Holt, Rinehart, Winston, 1971.

    Google Scholar 

  11. Chernous’ko, F.L. and Kolmanovskii, V.B., Computational and Approximate Methods of Optimal Control, in Itogi Nauki i Tekhn.,Ser. Mat. Analiz, vol. 17, Moscow: VINITI, 1977, pp. 101–166.

    Google Scholar 

  12. Tertychnyi-Dauri, V.Yu., Adaptive Optimal Nonlinear Filtering and Some Related Questions. I, II, Avtomat. Telemekh., 2001, vol. 62, no.9, pp. 125–137; 2002, vol. 63, no. 1, pp. 86–101 [Automat. Remote Control (Engl. Transl.), 2001, vol. 62, no. 9, pp. 1511–1522; 2002, vol. 63, no. 1, pp. 76–89].

    Google Scholar 

  13. Tertychnyi-Dauri, V.Yu., Parametric Filtering: Optimal Synthesis on a Nonlinear Dynamic Variety, Probl. Peredachi Inf., 2001, vol. 37, no.4, pp. 97–111 [Probl. Inf. Trans. (Engl. Transl.), 2001, vol. 37, no. 4, pp. 365–379].

    Google Scholar 

  14. Beletskii, V.V. and Egorov, V.A., Interplanetary Flights with Constant-Power Engines, Kosmich. Issled., 1964, vol. 2, no.3, pp. 360–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Peredachi Informatsii, No. 1, 2005, pp. 53–67.

Original Russian Text Copyright © 2005 by Tertychnyi-Dauri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tertychnyi-Dauri, V.Y. Solution of variational dynamic problems under parametric uncertainty. Probl Inf Transm 41, 45–58 (2005). https://doi.org/10.1007/s11122-005-0009-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11122-005-0009-3

Keywords