Skip to main content
Log in

Quantum Computer Development with Single Ion Implantation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Spins of single donor atoms are attractive candidates for large scale quantum information processing in silicon. Formation of devices with a few qubits is crucial for validation of basic ideas and development of a scalable architecture. We describe our development of a single ion implantation technique for placement of single atoms into device structures. Collimated highly charged ion beams are aligned with a scanning probe microscope. Enhanced secondary electron emission due tohigh ion charge states (e.g., 31P13+, or 126Te33+)allows efficient detection of single ion impacts. Studies of electrical activation of low dose, low energy implants of 31P in silicon show a drastic effect of dopant segregation to the SiO2/Si interface,while Si3N4/Si retards 31P segregation. We discuss resolution limiting factors in ion placement, and process challenges forintegration of single atom arrays with control gates and single electron transistors.

PACS: 03.67.Lx, 34.50.Dy, 85.35.Gv, 73.23, 61.72, 86.40.py, 07.79.-v

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. E. Kane, Nature 393, 133 (1998).

    Google Scholar 

  2. A. J. Skinner, M. E. Davenport, and B. E. Kane, Phys. Rev. Lett. 90, 087901 (2003).

    Google Scholar 

  3. R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin, V. Roychowdhury, T. Mor, and D. DiVincenzo, Phys. Rev. A 62, 12306 (2000).

    Google Scholar 

  4. A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, Phys. Rev. B 68, 193207 (2003).

    Google Scholar 

  5. T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, J. Appl. Phys. 94, 7017 (2003).

    Google Scholar 

  6. S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. Rangelow, and T. Schenkel, Microelectr. Eng. 73–74, 695 (2004).

    Google Scholar 

  7. Yang Changyi, D. N. Jamieson, C. Pakes, S. Prawer, A. Dzurak, F. Stanley, P. Spizziri, L. Macks, E. Gauja, and R. G. Clark. J. Appl. Phys. 42, 4124 (2003).

  8. T. Shinnada, H. Koyama, C. Hinoshita, K. Imamura, and I. Ohdomari, Jpn. J. Appl. Phys. 41, L287 (2002).

    Google Scholar 

  9. R. A. Baragiola, Nucl. Instr. Meth. B 78, 223 (1993).

    Google Scholar 

  10. T. Schenkel, A. V. Barnes, M. A. Briere, A. Hamza, A. Schach von Wittenau, and D. Schneider, Nucl. Instr. Meth. B 125, 153 (1997).

    Google Scholar 

  11. F. Aumayr, H. Kurz, D. Schneider, M. A. Briere, J. W. McDonald, C. E. Cunningham, and H. P. Winter, Phys. Rev. Lett 71, 1943 (1993).

    Google Scholar 

  12. J. Orloff, M. Utlaut, and L. Swenson, High Resolution Focused Ion Beams: FIB and its Applications (Kluwer, New York, 2003).

    Google Scholar 

  13. R. E. Marrs, Nucl. Instr. Meth. B 149, 182 (1999).

    Google Scholar 

  14. T. Schenkel, A. Persaud, A. Kraemer, J. W. McDonald, J. P. Holder, A. V. Hamza, and D. H. Schneider, Rev. Sci. Instr. 73, 663 (2002).

    Google Scholar 

  15. T. Schenkel, A. Persaud, S. J. Park, J. Meijer, J. R. Kingsley, J. W. McDonald, J. P. Holder, J. Bokor, and D. H. Schneider, J. Vac. Sci. Technol. B 20, 2819 (2002).

    Google Scholar 

  16. M. Hattass, T. Schenkel, A. V. Hamza, A. V. Barnes, M. W. Newman, J. W. McDonald, T. R. Niedermayr, G. A. Machicoane, and D. H. Schneider, Phys. Rev. Lett. 82, 4795 (1999).

    Google Scholar 

  17. B. E. Kane, N. S. McAlpine, A. S. Dzurak, and R. G. Clark, G. J. Milburn, He Bi Sun, and Howard Wiseman, Phys. Rev. B 61, 2961 (2000).

    Google Scholar 

  18. I. W. Rangelow, F. Shi, P. Hudek, T. Gotszalk, P. B. Grabiec, and P. Dumania, SPIE 2879, 56 (1996).

    Google Scholar 

  19. T. Schenkel, V. Radmilovic, E. A. Stach, S.-J. Park, and A. Persaud, J. Vac. Sci. Technol. B 21, 2720 (2003).

    Google Scholar 

  20. R. Pedrak, Tzv. Ivanov, K. Ivanova, T. Gotszalk, N. Abedinov, and I. W. Rangelow, K. Edinger, E. Tomerov, T. Schenkel, and P. Hudek, J. Vac. Sci. Technol. B 21, 3102 (2003).

  21. A. Ural, P. B. Griffin, and J. D. Plummer, J. Appl. Phys. 85, 6440 (1999).

    Google Scholar 

  22. J. Dabrowski, H.-J. Müssig, V. Zavodinsky, R. Baierle, and M. J. Caldas, Phys. Rev. B 65, 245305 (2002).

    Google Scholar 

  23. See e.g., H. Ahmed, J. Vac. Sci. Technol. B 15, 2101 (1997).

  24. T.-C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, Ph. Avouris, and R. E. Walkup, Science 268, 1590 (1995); T.-C. Shen, J.-Y. Ji, M. A. Zudov, R.-R. Du, J. S. Kline, and J. R. Tucker, Appl. Phys. Lett. 80, 1580 (2002).

  25. S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. Rue®, T. Hallam, L. Overbeck, and R. G. Clark, Phys. Rev. Lett. 91, 13104 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persaud, A., Park, S.J., Liddle, J.A. et al. Quantum Computer Development with Single Ion Implantation. Quantum Information Processing 3, 233–245 (2004). https://doi.org/10.1007/s11128-004-3879-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-004-3879-1

Navigation