Skip to main content

Advertisement

Log in

Derivation of the Lewenstein–Sanpera Decomposition via Semidefinite Programming

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In many theoretical proposals appeared recently, semidefinite programming was considered as a way to express quantum entanglement. Using semidefinite optimization method, we prove the Lewenstein–Sanpera lemma in a simple elegant manner. Particularly, using this method we obtain Lewenstein–Sanpera decomposition for some examples such as: generic two qubit state in Wootters’s basis, Iso-concurrence state, Bell decomposable state and 2 ⊗ 3 Bell decomposable state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. Einstein B. Podolsky Rosen (1935) Phys. Rev. 47 777 Occurrence Handle10.1103/PhysRev.47.777

    Article  Google Scholar 

  2. E. Schrödinger (1935) Naturwissenschaften 23 807 Occurrence Handle10.1007/BF01491891

    Article  Google Scholar 

  3. M. Lewenstein A. Sanpera (1998) Phys. Rev. Lett. 80 2261 Occurrence Handle10.1103/PhysRevLett.80.2261

    Article  Google Scholar 

  4. B. G. Englert N. Metwally (2000) J. Mod. Opt. 47 2221 Occurrence Handle10.1080/095003400420076

    Article  Google Scholar 

  5. S. Karnas M. Lewenstein (2001) J. Phys. A. Math. Gen. 34 6919 Occurrence Handle10.1088/0305-4470/34/35/318

    Article  Google Scholar 

  6. T. Wellens M. Kus (2001) Phys. Rev. A. 64 052302 Occurrence Handle10.1103/PhysRevA.64.052302

    Article  Google Scholar 

  7. M. X. Goemans D. P. Williamson (1995) ArticleTitleImproved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming J Assoc Comput Mach. 42 IssueID6 1115

    Google Scholar 

  8. Z. Q. Luo (2003) ArticleTitleApplications of Convex Optimization in Signal Processing and Digital Communication Math. Program. Series B 97 177

    Google Scholar 

  9. T. N. Davidson Z. Q. Luo K. M. Wong (2000) ArticleTitleDesign of Orthogonal Pulse Shapes for Communications via Semidefinite Programming IEEE Trans. Signal Proces 48 IssueID5 1433 Occurrence Handle10.1109/78.839988

    Article  Google Scholar 

  10. W. K. Ma T. N. Davidson K. M. Wong Z.-Q. Luo P. C. Ching (2002) ArticleTitleQuasi-Maximum-Likelihood Multiuser Detection Using Semidefinite Relaxation with Application to Synchronous CDMA IEEE Trans. Signal Proces. 50 912 Occurrence Handle10.1109/78.992139

    Article  Google Scholar 

  11. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics (1994).

  12. A. C. Doherty P. A. Parrilo F. M. Spedalieri (2002) ArticleTitleDistinguishing Separable and Entangled States Phys. Rev. Lett. 88 187904 Occurrence Handle10.1103/PhysRevLett.88.187904 Occurrence Handle12005725

    Article  PubMed  Google Scholar 

  13. P. A. Parrilo, A. C. Doherty, and F. M. Spedalieri, Entanglement Witnesses and Semidefinite Programming, in Proceedings of the 41st IEEE Conference of Decision and Control (2002).

  14. L. Vandenberghe S. Boyd (1996) SIAM Rev. 38 49 Occurrence Handle10.1137/1038003

    Article  Google Scholar 

  15. L. Vandenberghe S. Boyd (2004) Convex Optimization Cambridge University Press Cambridge

    Google Scholar 

  16. S. J. Akhtarshenas M. A. Jafarizadeh (2004) Phys. A: Math. Gen. 37 2965 Occurrence Handle10.1088/0305-4470/37/8/008

    Article  Google Scholar 

  17. A. Peres (1996) Phys. Rev. Lett. 77 1413 Occurrence Handle10.1103/PhysRevLett.77.1413 Occurrence Handle10063072

    Article  PubMed  Google Scholar 

  18. M. Lewenstein, Quantum Information Theory, Lecture Note (2001).

  19. W. K. Wootters (1998) Phys. Rev. Lett. 80 2245 Occurrence Handle10.1103/PhysRevLett.80.2245

    Article  Google Scholar 

  20. S. J. Akhtarshenas M. A. Jafarizadeh (2004) J. Phys. A: Math. Gen. 37 2965 Occurrence Handle10.1088/0305-4470/37/8/008

    Article  Google Scholar 

  21. S. J. Akhtarshenas M. A. Jafarizadeh (2003) Quantum. Inf Comput. 3 229

    Google Scholar 

  22. M. Horodecki P. Horodecki R. Horodecki (1996) Phys. Lett. A. 223 1 Occurrence Handle10.1016/S0375-9601(96)00706-2

    Article  Google Scholar 

  23. N. Linden S. Massar S. Popesco (1998) Phys. Rev. Lett. 81 3279 Occurrence Handle10.1103/PhysRevLett.81.3279

    Article  Google Scholar 

  24. A. Kent N. Linden S. Massar (1999) Phys. Rev. Lett. 83 2656 Occurrence Handle10.1103/PhysRevLett.83.2656

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Jafarizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafarizadeh, M.A., Mirzaee, M. & Rezaee, M. Derivation of the Lewenstein–Sanpera Decomposition via Semidefinite Programming. Quantum Inf Process 4, 199–218 (2005). https://doi.org/10.1007/s11128-005-5657-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-005-5657-0

Keywords

PACS