Skip to main content
Log in

Quantum Malware

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

When quantum communication networks proliferate they will likely be subject to a new type of attack by hackers, virus makers, and other malicious intruders. Here we introduce the concept of “quantum malware” to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner, which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed ancillas. It applies to arbitrary attack types, provided the protective operations are themselves not compromised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L. (2000). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  2. Dowling J.P., Milburn G.J. (2003). Phil. Trans. R. Soc. (Lond.) 361: 1655

    Article  ADS  MathSciNet  Google Scholar 

  3. C. Elliott, eprint quant-ph/0412029.

  4. Steane A.M. (1999). Nature 399: 124

    Article  ADS  Google Scholar 

  5. Cleve R., Gottesman D., Lo H.-K. (1999). Phys. Rev. Lett. 83: 648

    Article  ADS  Google Scholar 

  6. Shor P.W., Preskill J. (2000). Phys. Rev. Lett. 85: 441

    Article  PubMed  ADS  Google Scholar 

  7. See, e.g., http://en.wikipedia.org/wiki/Malware.

  8. Nielsen M.A., Chuang I.L. (1997). Phys. Rev. Lett. 79: 321

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Vidal G., Masanes L., Cirac J.I. (2002). Phys. Rev. Lett. 88: 047905

    Article  PubMed  ADS  Google Scholar 

  10. Rosko M., Buzek V., Chouha P.R., Hillery M. (2003). Phys. Rev. A 68: 062302

    Article  ADS  MathSciNet  Google Scholar 

  11. Fiurasek J., Dusek M. (2004). Phys. Rev. A 69: 032302

    Article  ADS  Google Scholar 

  12. D’Ariano G.M., Perinotti P. (2005). Phys. Rev. Lett. 94: 090401

    Article  PubMed  Google Scholar 

  13. Wootters W.K., Zurek W.H. (1982). Nature 299: 802

    Article  ADS  Google Scholar 

  14. Dieks D. (1982). Phys. Lett. A 92: 271

    Article  ADS  Google Scholar 

  15. Deutsch D. (1989). Proc. R. Soc. Lond. Ser. A 425: 73

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Kraus K. (1983). States, Effects and Operations, Fundamental Notions of Quantum Theory. Academic, Berlin

    MATH  Google Scholar 

  17. H. Barnum et al., in Proc. 43rd Annual IEEE Symposium on the Foundations of Computer Science (FOCS’02) (IEEE Press, 2002).

  18. Gottesman D., Lo H.-K. (2000). Phys. Today 53: 22

    Article  Google Scholar 

  19. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K. (1993). Phys. Rev. Lett. 70: 1895

    Article  PubMed  MATH  ADS  MathSciNet  Google Scholar 

  20. Giovannetti V., Lloyd S., Maccone S.L. (2001). Nature 412: 417

    Article  PubMed  ADS  Google Scholar 

  21. Blakely G. (1979). Proc. AFIPS Nat. Comput. Conf. 48: 313

    Google Scholar 

  22. Shamir A. (1979). Comm. Assoc. Comput. Mach. 22: 612

    MATH  MathSciNet  Google Scholar 

  23. Gottesman D. (2000). Phys. Rev. A 61: 042311

    Article  ADS  MathSciNet  Google Scholar 

  24. Hillery M., Buzek V., Berthiaume A. (1999). Phys. Rev. A 59: 1829

    Article  ADS  MathSciNet  Google Scholar 

  25. Karlsson A., Koashi M., Imoto N. (1999) Phys. Rev. A 59: 162

    Article  ADS  Google Scholar 

  26. Hamburger D.A., Biham O., Avnir D. (1996). Phys. Rev. E 53: 3342

    Article  ADS  Google Scholar 

  27. Wu L.-A., Lidar D.A. (2004). Phys. Rev. A 70: 062310

    Article  ADS  Google Scholar 

  28. Loss D., DiVincenzo D.P. (1998). Phys. Rev. A 57: 120

    Article  ADS  Google Scholar 

  29. Burkard G., Loss D., DiVincenzo D.P. (1999). Phys. Rev. B 59: 2070

    Article  ADS  Google Scholar 

  30. Lidar D.A., Wu L.-A. (2002). Phys. Rev. Lett. 88: 017905

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  31. Bonesteel N.E., Stepanenko D., DiVincenzo D.P. (2001). Phys. Rev. Lett. 87: 207901

    Article  PubMed  ADS  Google Scholar 

  32. Chen P., Piermarocchi C., Sham L.J. (2001). Phys. Rev. Lett. 87: 067401

    Article  PubMed  ADS  Google Scholar 

  33. Biolatti E., Iotti R.C., Zanardi P., Rossi F. (2000). Phys. Rev. Lett. 85: 5647

    Article  PubMed  ADS  Google Scholar 

  34. Platzman P.M., Dykman M.I. (1999). Science 284: 1967

    Article  PubMed  Google Scholar 

  35. Knill E., Laflamme R., Milburn G.J. (2001). Nature 409: 46

    Article  PubMed  ADS  Google Scholar 

  36. Viola L.J. (2004) Mod. Optics 51: 2357

    Article  MATH  ADS  Google Scholar 

  37. Facchi P., Tasaki S., Pascazio S., Nakazato H., Tokuse A., Lidar D.A. (2005). Phys. Rev. A 71: 022302

    Article  ADS  Google Scholar 

  38. D. A. Lidar and K. B. Whaley, in Irreversible Quantum Dynamics, Vol. 622 of Lecture Notes in Physics (Springer, Berlin, 2003), p. 83. Eprint quant-ph/0301032.

  39. Lo H.-K., Chau H.F. (1999). Science 283: 2050

    Article  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lidar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, LA., Lidar, D. Quantum Malware. Quantum Inf Process 5, 69–81 (2006). https://doi.org/10.1007/s11128-006-0014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-006-0014-5

Keywords

Pacs

Navigation