Skip to main content
Log in

Kaonic Qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Quantum mechanics can also be tested in high-energy physics; in particular, the neutral kaon system is very well suited. We show that these massive particles can be considered as qubits— kaonic qubits—in the very same way as spin–1/2 particles or polarized photons. But they also have other important properties, namely they are instable particles and they violate the C P symmetry (C... charge conjugation, P... parity). We consider a Bell inequality and, surprisingly, the premises of local realistic theories require strict C P conservation, in contradiction to experiment. Furthermore, we investigate Bohr’s complementary relation in order to describe the physics of the time evolution of kaons. Finally, we discuss quantum marking and eraser experiments with kaons, which prove in a new way the very concept of a quantum eraser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertlmann R.A, Entanglement, Bell Inequalities and Decoherence in particle physics. Lecture Notes in Physics (Springer-Verlag, Berlin, 2005), quant-ph/0410028.

  2. Bertlmann R.A., Hiesmayr B.C, (2001). Phys. Rev. A 63, 062112

    Article  ADS  Google Scholar 

  3. Gisin N, Go A. (2001). Am. J. Phys. 69, 264

    Article  ADS  Google Scholar 

  4. Bertlmann R.A, Bramon A, Garbarino G, Hiesmayr B.C, (2004). Phys. Lett. A 332, 355

    Article  ADS  Google Scholar 

  5. Nagata K, Laskowski W, Wieśniak M., Żukowski M., (2004). Phys. Rev. Lett. 93, 230403

    Article  ADS  Google Scholar 

  6. Unnikrishnan C.S, (2005). Europhys. Lett. 69, 489

    Article  MathSciNet  ADS  Google Scholar 

  7. Uchiyama F, (1997). Phys. Lett. A 231, 295

    Article  ADS  Google Scholar 

  8. Bertlmann R.A, Grimus W., Hiesmayr B.C, (2001). Phys. Lett. A 289, 21

    Article  MATH  ADS  Google Scholar 

  9. Groom D.E. etal., (1998). Eur. Phys. J. C 3, 1

    Google Scholar 

  10. Feynman R.P, Leighton R.B, Sands M. The Feynman Lectures on Physics, Vol 3. Addison-Wesley, 1965), pp. 1–1, pp. 11–20.

  11. Greenberger D, Yasin A. (1988). Phys. Lett A 128, 391

    Article  ADS  Google Scholar 

  12. Englert B.-G., (1996). Phys. Rev. Lett 77: 2154

    Article  ADS  Google Scholar 

  13. Bramon A, Garbarino G, Hiesmayr B.C, (2004). Phys. Rev A 69, 022112

    Article  ADS  Google Scholar 

  14. Hiesmayr B.C,Vedral V. “Interferometric Wave-Particle Duality for Thermodynamical systems, quant-ph/0501015.

  15. Arndt M, Nairz O, Vos-Andreae J., Keller C, Van der Zouw G., Zeilinger A. (1999). Nature 401, 680682

    Article  ADS  Google Scholar 

  16. For example, a “red Ferrari racing through a double slit” (as demonstrated by Markus Arndt at the Symposium “Bose–Einstein condensation and quantum information” at the Erwin Schrödinger Institute, Vienna, December 2005).

  17. Scully M.O., Drühl K., (1982). Phys. Rev. A. 25: 2208

    Article  ADS  Google Scholar 

  18. Dürr S., Rempe G. (2000). Opt. Commun. 179, 323

    Article  ADS  Google Scholar 

  19. Herzog T.J, Kwiat P.G, Weinfurter H, Zeilinger A. (1995). Phys Rev Lett 75: 3034

    Article  ADS  Google Scholar 

  20. KimY. -H., Yu R, Kuklik S.P, Shih Y, Scully M.O, (2000). Phys Rev Lett. 84, 1

    Article  MATH  ADS  Google Scholar 

  21. Tsegaye T, Björk G., Atatüre M., Sergienko A.V, Saleh B.W.A, Teich M.C, (2000). Phys. Rev A 62, 032106

    Article  ADS  Google Scholar 

  22. Walborn S.P, Terra Cunha M.O., Padua S, Monken C.H, (2002). Phys. Rev. A 65, 033818

    Article  ADS  Google Scholar 

  23. Trifonov A, Björk G., Söderholm J., Tsegaye T. (2002). Eur. Phys. J. D 18, 251

    ADS  Google Scholar 

  24. Kim H, Ko J, Kim T. (2003). Phys. Rev. A 67, 054102

    Article  ADS  Google Scholar 

  25. Aharonov Y., Zubaiy M.S, (2005). Science 307, 875

    Article  MathSciNet  ADS  Google Scholar 

  26. Bramon A, Garbarino G, Hiesmayr B.C, (2004). Phys. Rev. Lett. 92, 020405

    Article  ADS  Google Scholar 

  27. Bramon A, Garbarino G, Hiesmayr B.C, (2004). Phys. Rev. A 68, 062111

    Article  ADS  Google Scholar 

  28. The authors of Ref. 18 used type–I crystals in their experiment.

  29. Thanks to this normalization, we work with bipartite two–level quantum systems like polarization entangled photons or entangled spin–1/2 particles. For an accurate description of the time evolution of kaons and its implementation consult Ref. 2.

  30. Apstolakis A. etal., (1998). Phys. Lett. B 422, 339

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold A. Bertlmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertlmann, R.A., Hiesmayr, B.C. Kaonic Qubits. Quantum Inf Process 5, 421–440 (2006). https://doi.org/10.1007/s11128-006-0026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-006-0026-1

Keywords

Pacs

Navigation