Skip to main content
Log in

Fiber Optics Protocols for Quantum Communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

We show how the techniques developed for long distance quantum key distribution in optical fibers can be used to demonstrate other quantum information processing and communication protocols. We present a fiber optics realization of the Deutsch–Jozsa and Bernstein–Vazirani algorithms. We describe a method, called “error filtration”, for reducing errors in quantum communication channels, and present an experimental implementation thereof. We discuss the cryptographic primitive of string flipping, and present an experimental implementation which has higher security than achievable using any classical protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett and G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, (IEEE, New York, 1984. Bangalore, India, 1984), pp. 175–179.

  2. Deutsch D. (1985). Proc. R. Soc. Lond. A 400, 97

    MATH  MathSciNet  ADS  Google Scholar 

  3. Nielsen M.A., Chuang I.L. (2004). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Stucki D., Gisin N., Guinnard O., Ribordy G., Zbinden H. (2002). New J. Phys. 4, 41

    Article  ADS  Google Scholar 

  5. Gobby C., Yuan Z.L., Shields A. (2004). Appl. Phys. Lett. 84, 3762–3764

    Article  ADS  Google Scholar 

  6. Ribordy G., Gautier J-D., Gisin N., Guinnard O., Zbinden H. (1998). Elect. Lett. 34, 2116–2117

    Article  Google Scholar 

  7. Deutsch D., Jozsa R. (1992). Proc. R. Soc. Lond. A 439, 553

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Bernstein E., Vazirani U.V. (1997). SIAM J. Comput. 26: 1411

    Article  MATH  MathSciNet  Google Scholar 

  9. Terhal B.M., Smolin J.A. (1998). Phys. Rev. A 58, 1822–1826

    Article  MathSciNet  ADS  Google Scholar 

  10. Brainis E., Lamoureux L.-P., Cerf N.J., Emplit Ph., Haelterman M., Massar S. (2003). Phys. Rev. Lett. 90, 157902

    Article  MathSciNet  ADS  Google Scholar 

  11. Shor P. (1995). Phys. Rev. A 52: 2493

    Article  ADS  Google Scholar 

  12. Bennett et al.C.H. (1996). Phys. Rev. Lett. 76: 722

    Article  ADS  Google Scholar 

  13. Gisin N., Linden N., Massar S., Popescu S. (2005). Phys. Rev. A 72: 012338

    Article  ADS  Google Scholar 

  14. Lamoureux L.-P., Brainis E., Cerf N.J., Emplit Ph., Haelterman M., Massar S. (2005). Phys. Rev. Lett., 94: 230501

    Article  ADS  Google Scholar 

  15. Lamoureux L.P., Brainis E., Amans D., Barrett J., Massar S. (2005). Phys. Rev. Lett. 94: 050503

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Barrett and S. Massar, Cheat Sensitive String Flipping, in preparation (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Massar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massar, S. Fiber Optics Protocols for Quantum Communication. Quantum Inf Process 5, 441–449 (2006). https://doi.org/10.1007/s11128-006-0029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-006-0029-y

Keywords

Pacs

Navigation