Skip to main content
Log in

Quantum dynamics of superconducting nano-circuits: phase qubit, charge qubit and rhombi chains

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We have studied different quantum dynamics of superconducting nano-circuits with Josephson junctions. A dc SQUID, when it is strongly decoupled from the environment, demonstrates two-level and multilevel dynamics. We have realized a two qubits coupled circuit based on a dc SQUID in parallel with an asymmetric Cooper pair transistor (ACPT). The ACPT behaves as a charge qubit. Its asymmetry produces a strong tunable coupling with the dc SQUID which is used to realize entangled states between the two qubits and new read-out of the charge qubit based on adiabatic quantum transfer. We have measured the current–phase relations of different rhombi chains in the presence or absence of quantum fluctuations which confirm theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Balestro, F.: Dynamique quantique d’un SQUID-DC. PhD Thesis, Universite Joseph Fourier, Grenoble, France (2003)

  2. Balestro F., Claudon J., Pekola J., Buisson O.: Evidence of two-dimensional macroscopic quantum tunneling of a current-biased dc SQUID. Phys. Rev. Lett. 91, 158301 (2003)

    Article  ADS  Google Scholar 

  3. Buisson O., Balestro F., Pekola J.P., Hekking F.W.J.: One shot quantum measurement using a hysteretic dc SQUID. Phys. Rev. Lett. 90, 238304 (2003)

    Article  ADS  Google Scholar 

  4. Buisson O., Hekking, F.W.J.: Entangled states in a Josephson charge qubit coupled to a superconducting resonator. In: Averin, D., Ruggiero, B., Silvestrini, P. (eds.) Macroscopic Quantum Coherence and Computing, p. 137. Kluwer Academic, New York (2001)

  5. Claudon, J.: Ocillations cohérentes dans un circuit quantique supraconducteur: le SQUID dc. Ph.D. Thesis, Université Joseph Fourier, Grenoble, France (2005)

  6. Claudon J., Balestro F., Hekking F.W.J., Buisson O.: Coherent oscillations in a superconducting multilevel quantum system. Phys. Rev. Lett. 93, 187003 (2004)

    Article  ADS  Google Scholar 

  7. Claudon J., Fay A., Hoskinson E., Buisson O.: Nanosecond quantum state detection in a current-biased dc SQUID. Phys. Rev. B 76, 024508 (2007)

    Article  ADS  Google Scholar 

  8. Claudon J., Fay A., Lévy L.P., Buisson O.: Decoherence processes in a current biased dc SQUID. Phys. Rev. B 73, 180502(R) (2006)

    Article  ADS  Google Scholar 

  9. Claudon J., Zazunov A., Hekking F.W.J., Buisson O.: Rabi-like oscillations of an anharmonic oscillator: classical versus quantum interpretation. Phys. Rev. B 78, 184503 (2008)

    Article  ADS  Google Scholar 

  10. Collin E., Ithier G., Aassime A., Joyez P., Vion D., Urbina C., Esteve D.: Manipulating the quantum state of an electrical circuit. Phys. Rev. Lett. 93, 157005 (2004)

    Article  ADS  Google Scholar 

  11. Dolata R., Scherer H., Zorin A.B., Niemeyer J.: Single-charge devices with ultrasmall Nb/AlOx/Nb trilayer Josephson junctions. J. Appl. Phys. 97, 054501 (2005)

    Article  ADS  Google Scholar 

  12. Douçot B., Vidal J.: Pairing of Cooper pairs in a fully frustrated Josephson-junction chain. Phys. Rev. Lett. 88, 227005 (2002)

    Article  ADS  Google Scholar 

  13. Dutta S.K., Strauch F.W., Lewis R.M., Mitra K., Paik H., Palomaki T.A., Tiesinga E., Anderson J.R., Dragt A.J., Lobb C.J., Wellstood F.C.: Multilevel effects in the Rabi oscillations of a Josephson phase qubit. Phys. Rev. B 78, 104510 (2008)

    Article  ADS  Google Scholar 

  14. Fay, A.: Couplage variable entre un qubit de charge et un qubit de phase. PhD Thesis, Universite Joseph Fourier, Grenoble, France (2008)

  15. Fay A., Hoskinson E., Lecocq F., Levy L.P., Hekking F.W.J., Guichard W., Buisson O.: Strong tunable coupling between a superconducting charge and phase qubit. Phys. Rev. Lett. 100, 187003 (2008)

    Article  ADS  Google Scholar 

  16. Gladchenko, S., Olaya, D., Dupont-Ferrier, E., Doucot, B., Ioffe, L.B., Gershenson, M.E.: Superconducting nanocircuits for topologically protected qubits. Nature Phys. 5(1) (2008)

  17. Gronbech-Jensen N., Cirillo M.: Rabi-type oscillations in a classical Josephson junction. Phys. Rev. Lett. 95, 067001 (2005)

    Article  ADS  Google Scholar 

  18. Hekking, F.W.J., et al. In: Martin, T., Montambaux, G. (eds.) Electronic Correlations: From Meso- to Nano-physics, p. 515. J. Tran Thanh Van. EDP Sciences, Les Ulis (2001)

  19. Hime T. et al.: Solid-state qubits with current-controlled coupling. Science 314, 1427 (2006)

    Article  ADS  Google Scholar 

  20. Hoskinson, E., Lecocq, F., Didier, N., Fay, A., Hekking, F.W.J., Guichard, W., Dolata, R., Mackrodt, B., Zorin, A.B., Buisson, O.: Quantum dynamics of a camel back potential of a dc SQUID. arXiv:0810.2372v1. Phys. Rev. Lett. (to be published)

  21. Ioffe L.B., Feigelõman M.V.: Possible realization of an ideal quantum computer in Josephson junction array. Phys. Rev. B 66, 224503 (2002)

    Article  ADS  Google Scholar 

  22. Ivlev B.I., Ovchinnikov Yu.N.: Effect of level quantization on the lifetime of metastable states. Sov. Phys. JETP 64, 185 (1986)

    Google Scholar 

  23. Larkin A.I. , Ovchinnikov Y.N.: Effect of level quantization on the lifetime of metastable states. Sov. Phys. JETP 64, 185 (1986)

    Google Scholar 

  24. Lefevre-Seguin V., Turlot E., Urbina C., Esteve D., Devoret M.H.: Thermal activation of a hysteretic dc superconducting quantum interference device from its zero-voltage states. Phys. Rev. B 46, 5507 (1992)

    Article  ADS  Google Scholar 

  25. Lisenfeld J., Lukashenko A., Ansmann M., Martinis J.M., Ustinov A.V.: Temperature dependence of coherent oscillations in Josephson phase qubits. Phys. Rev. Lett. 99, 170504 (2007)

    Article  ADS  Google Scholar 

  26. Marchese J.E., Cirillo M., Gronbech-Jensen N.: Classical analysis of phase-locking transients and Rabi-type oscillations in microwave-driven Josephson junctions. Phys. Rev. B 73, 174507 (2006)

    Article  ADS  Google Scholar 

  27. Martinis J.M., Nam S., Aumentado J., Urbina C.: Rabi oscillations in a large Josephson junction qubit. Phys. Rev. Lett. 89, 117901 (2002)

    Article  ADS  Google Scholar 

  28. Matveev K.A., Larkin A.I., Glazman L.I.: Persistent current in superconducting nanorings. Phys. Rev. Lett. 89, 096802 (2002)

    Article  ADS  Google Scholar 

  29. Nakamura Y., Pashkin Yu.A., Tsai J.S.: Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786 (1999)

    Article  ADS  Google Scholar 

  30. Niskanen A.O. et al.: Quantum coherent tunable coupling of superconducting qubits. Science 316, 723 (2007)

    Article  ADS  Google Scholar 

  31. Pop I.M., Hasselbach K., Buisson O., Guichard W., Pannetier B., Protopopov I.: Measurement of the current-phase relation in Josephson junction rhombi chains. Phys. Rev. B 78, 104504 (2008)

    Article  ADS  Google Scholar 

  32. Protopopov I., Feigel’man M.: Anomalous periodicity of supercurrent in long frustrated Josephson-junction rhombi chains. Phys. Rev. B 70, 184519 (2004)

    Article  ADS  Google Scholar 

  33. Protopopov I., Feigel’man M.: Coherent transport in Josephson-junction rhombi chain with quenched disorder. Phys. Rev. B 74, 064516 (2006)

    Article  ADS  Google Scholar 

  34. Simmonds R.W., Lang K.M., Hite D.A., Nam S., Pappas D.P., Martinis J.M.: Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93, 077003 (2004)

    Article  ADS  Google Scholar 

  35. Strauch F.W., Dutta S.K., Paik H., Palomaki T.A., Mitra K., Cooper B.K., Lewis R.M., Anderson J.R., Dragt A.J., Lobb C.J., Wellstood F.C.: Strong-field effects in the Rabi oscillations of the superconducting phase qubit. IEEE Trans. Appl. Supercond. 17, 105 (2007)

    Article  Google Scholar 

  36. Tesche C.D., Clarke J.J.: dc SQUID : noise and optimization. Low Temp. Phys. 29, 301 (1977)

    Article  ADS  Google Scholar 

  37. Vidal J., Mosseri R., Douçot B.: Aharonov-Bohm cages in two-dimensional structures. Phys. Rev. Lett. 81, 5888 (1998)

    Article  Google Scholar 

  38. Vion D.D., Aassime A., Joyez A., Pothier H., Urbina C., Esteve D., Devoret M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886 (2002)

    Article  ADS  Google Scholar 

  39. Wallraff A., Ithier D.I., Blais A., Frunzio L., Huang R.-S., Majer J., Kumar S., Girvin S.M., Schoelkopf R.J.: Strong coupling of a single photon to a superconduting qubit using circuit quantum electrodynamics. Nature 431, 161 (2004)

    Article  ADS  Google Scholar 

  40. Yu Y., Han S., Chu X., Chu S., Wang Z.: Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science 296, 889 (2002)

    Article  ADS  Google Scholar 

  41. Zorin A.B.: The thermocoax cable as the microwave frequency filter for single electron circuits. Rev. Sci. Instrum. 66, 4296 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Buisson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buisson, O., Guichard, W., Hekking, F.W.J. et al. Quantum dynamics of superconducting nano-circuits: phase qubit, charge qubit and rhombi chains. Quantum Inf Process 8, 155–182 (2009). https://doi.org/10.1007/s11128-009-0094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0094-0

Keywords

PACS