Skip to main content
Log in

Analytically solvable model for the entanglement via scattering-like mechanisms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study entanglement in a composite system built out of two interacting subsystems. The long-time entanglement is shown to be quantified in terms of the S-matrix of an auxiliary single-particle scattering process. We present exact results for a system consisting of a qubit and an oscillator as well as for the case of a pair of qubits and a single oscillator. We show that entanglement can precisely be controlled by tuning the parameters of the corresponding scattering process. Within tailored parameter regimes, the extremal entanglement is achieved when time of scattering is of order of the oscillator frequency inverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio S. et al.: Solvable models in quantum mechanics. AMS Chelsea Publishing, Providence (2004)

    Google Scholar 

  2. Alicki R.: Pure decoherence in quantum systems. Open Sys. Inf. Dyn. 11, 53–61 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buscemi F., Bordone P., Bertoni A.: Entanglement dynamics of electron–electron scattering in low-dimensional semiconductor systems. Phys. Rev. A 73, 052312–052321 (2006)

    Article  ADS  Google Scholar 

  4. Costa A.T., Bose S., Omar Y.: Entanglement of two impurities through electron scattering. Phys. Rev. Lett. 96, 230501 (2006)

    Article  PubMed  ADS  Google Scholar 

  5. Dajka J., Łuczka J.: Origination and survival of qudit–qudit entanglement in open system. Phys. Rev. A 77, 062303–062306 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dajka J., Łuczka J.: Bifurcations of the geometric phase of a qubit asymmerically coupled to the environment. J. Phys. A Math. Theor. 41, F442001–F442008 (2008)

    Article  ADS  Google Scholar 

  7. Dajka J., Mierzejewski M., Łuczka J.: Entanglement persistence in contact with environment: exact results. J. Phys. A Math. Theor. 40, F879–F886 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Dajka J., Mierzejewski M., Łuczka J.: Geometric phase of a qubit in dephasing environments. J. Phys. A Math. Theor. 41, F012001–F012007 (2008)

    Article  Google Scholar 

  9. Dajka J., Mierzejwski M., Łuczka J.: Non-Markovian entanglement evolution of two uncoupled qubits. Phys. Rev. A 77, 042316–042318 (2008)

    Article  ADS  Google Scholar 

  10. Dajka J., Mierzejewski M., Łuczka J.: Fidelity of asymmetric dephasing channels. Phys. Rev. A 79, 012104–012107 (2009)

    Article  ADS  Google Scholar 

  11. Eckart C.: The penetration of a potential barrier by electrons. Phys. Rev. 35, 1303–1309 (1930)

    Article  ADS  CAS  Google Scholar 

  12. Gardiner S.A., Cirac J.I., Zoller P.: Quantum chaos in an ion trap: the Delta-kicked harmonic oscillator. Phys. Rev. Lett. 79, 4790–4794 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Habgood M., Jefferson J.H., Briggs G.A.D.: Scattering-induced entanglement between spin qubits at remote two-state structures. J. Phys. Condens. Matter 21, 075503–075511 (2009)

    Article  ADS  Google Scholar 

  14. Harshman N.L., Singh P.: Entanglement mechanisms in one-dimensional potential scattering. J. Phys. A Math. Theor. 41, 155304–155316 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement, quant-ph/0703044. Rev. Mod. Phys. 81, 865–943 (2009)

    Google Scholar 

  16. Kiesel N., Schmid C., Weber U., Ursin R., Weinfurter H.: Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505–210509 (2005)

    Article  PubMed  ADS  Google Scholar 

  17. Leibfried D., Knill E., Seidelin S., Britton J., Blakestad R.B., Chiaverini J., Hume D.B., Itano W.M., Jost J.D., Langer C., Ozeri R., Reichle R., Wineland D.J.: Creation of a six-atom ‘Schrdinger cat’ state. Nature (London) 438, 639–642 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Łuczka J.: Spin in contact with thermostat: exact reduced dynamics. Physica A 167, 919–934 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  19. Mintert F.: Concurrence via entanglement witnesses. Phys. Rev. A 75, 052302–052306 (2007)

    Article  ADS  Google Scholar 

  20. Mintert F., Buchleitner A.: Observable entanglement measure for mixed quantum states. Phys. Rev. Lett. 98, 140505–140509 (2007)

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  21. Mintert F., Kuś M., Buchleitner A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502–260506 (2005)

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  22. Mintert F., Carvalho A.R.R., Kuś M., Buchleitner A.: Mesures and dynamics of entangled states. Phys. Rep. 415, 207–259 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  23. Mishima K., Hayashi M., Lin S.H.: Entanglement in scattering processes. Phys. Lett. A 333, 371–377 (2004)

    Article  ADS  CAS  MathSciNet  MATH  Google Scholar 

  24. Montangero S., Romito A., Benenti G., Fazio R.: Chaotic dynamics in superconducting nanocircuits. Europhys. Lett. 71, 893–899 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Perelomov A.M., Popov V.S.: Parametric excitation of a quantum oscillator. JETP 56, 1375–1390 (1969)

    MathSciNet  Google Scholar 

  26. Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1416 (1996)

    Article  PubMed  ADS  CAS  MathSciNet  MATH  Google Scholar 

  27. Pozzo E.N., Dominguez D.: Fidelity and quantum chaos in the mesoscopic device for the Josephson flux qubit. Phys. Rev. Lett. 98, 057006–057010 (2007)

    Article  PubMed  ADS  Google Scholar 

  28. Reed M., Simon B.: Methods of modern mathematical physics. Scattering theory. Academic Press, San Diego (1979)

    Google Scholar 

  29. Roszak K., Machnikowski P.: Complete disentanglement by partial pure dephasing. Phys. Rev. A 73, 022313–022319 (2006)

    Article  ADS  Google Scholar 

  30. Schmid C., Kiesel N., Wieczorek W., Weinfurter H., Mintert F., Buchleitner A.: Experimental direct observation of mixed state entanglement. Phys. Rev. Lett. 101, 260505–260509 (2008)

    Article  PubMed  ADS  Google Scholar 

  31. Schwinger J.: The theory of quantized fields. III. Phys. Rev. 91, 728–740 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  32. Sitenko A.G.: Scattering theory. Spriner, Berlin (1991)

    Google Scholar 

  33. Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314–032325 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dajka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dajka, J., Mierzejewski, M. & Łuczka, J. Analytically solvable model for the entanglement via scattering-like mechanisms. Quantum Inf Process 8, 461–475 (2009). https://doi.org/10.1007/s11128-009-0121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0121-1

Keywords

PACS

Navigation