Abstract
We study the non-equilibrium dynamics of a pair of qubits made of two-level atoms separated in space with distance r and interacting with one common electromagnetic field but not directly with each other. Our calculation makes a weak coupling assumption but no Born or Markov approximation. We write the evolution equations of the reduced density matrix of the two-qubit system after integrating out the electromagnetic field modes. We study two classes of states in detail: Class A is a one parameter family of states which are the superposition of the highest energy and lowest energy states, and Class B states which are the linear combinations of the symmetric and the antisymmetric Bell states. Our results for an initial Bell state are similar to those obtained before for the same model derived under the Born–Markov approximation. However, in the Class A states the behavior is qualitatively different: under the non-Markovian evolution we do not see sudden death of quantum entanglement and subsequent revivals, except when the qubits are sufficiently far apart. We provide explanations for such differences of behavior both between these two classes of states and between the predictions from the Markov and non-Markovian dynamics. We also study the decoherence of this two-qubit system.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Paz, J.P., Zurek, W.H.: Coherent Atomic Matter Waves. In: Kaiser, R., Westbrook, C., David, F. (eds.) Proceedings of the Les Houches Summer School, Session LXXII, 1999, pp. 553–614. Springer, Berlin (2001)
Zurek W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)
Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Ficek Z., Tanas R.: Entangled states and collective nonclassical effects in two-atom systems. Phys. Rep. 372, 369 (2002)
Anastopoulos C., Hu B.L.: Two-level atom–field interaction: exact master equations for non- Markovian dynamics, decoherence, and relaxation. Phys. Rev. A 62, 033821 (2000)
Shresta S., Anastopoulos C., Dragulescu A., Hu B.L.: Non-Markovian qubit dynamics in a thermal field bath: relaxation, decoherence, and entanglement. Phys. Rev. A 71, 022109 (2005)
Cummings N., Hu B.L.: Dynamics of atom–field entanglement: towards strong coupling and non-Markovian regimes. Phys. Rev. A 77, 053823 (2008)
Zyczkowski K., Horodecki P., Horodecki M., Horodecki R.: Dynamics of quantum entanglement. Phys. Rev. A 65, 012101 (2001)
Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)
Yu T., Eberly J.H.: Phonon decoherence of quantum entanglement: robust and fragile states. Phys. Rev. B 66, 193306 (2002)
Yu T., Eberly J.H.: Qubit disentanglement and decoherence via dephasing. Phys. Rev. B 68, 165322 (2003)
Ficek Z., Tanas R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74, 024304 (2006)
Anastopoulos C., Shresta S., Hu B.L.: Quantum entanglement under non-Markovian dynamics of two qubits interacting with a common electromagnetic field. quant-ph/0610007
Bell J.S.: On the Einstein podolsky rosen paradox. Physics 1, 195 (1964)
Wooters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Maniscalco S., Francica F., Zaffino R.L., Lo Gullo N., Plastina F.: Protecting entanglement via the quantum zeno Effect. Phys. Rev. Lett. 100, 090503 (2008)
Piilo J., Maniscalco S., Harkonen K., Suominen K.-A.: Non-Markovian quantum jumps. Phys. Rev. Lett. 100, 180402 (2008)
Paz J.P., Roncaglia A.J.: Dynamics of the entanglement between two oscillators in the same environment. Phys. Rev. Lett. 100, 220401 (2008)
Paz J.P., Roncaglia A.J.: Dynamical phases for the evolution of the entanglement between two oscillators coupled to the same environment. Phys. Rev. A 79, 032102 (2009)
Lin S.Y., Hu B.L.: Temporal and spatial dependence of quantum entanglement from a field theory perspective. Phys. Rev. D 79, 085020 (2009)
Yu, T., Eberly, J.H.: Many-body separability of warm qubits [arXiv:0707.3215]
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Anastopoulos, C., Shresta, S. & Hu, B.L. Non-Markovian entanglement dynamics of two qubits interacting with a common electromagnetic field. Quantum Inf Process 8, 549–563 (2009). https://doi.org/10.1007/s11128-009-0137-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-009-0137-6