Skip to main content
Log in

Entanglement in correlated spontaneous emission lasers

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recent studies show that macroscopic entangled states of the radiation field can be generated using correlated spontaneous emission lasers (CEL) even in the presence of cavity losses. Some of the basic schemes based on two-photon CEL and quantum beat laser (QBL) are reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777–780 (1935)

    Article  MATH  CAS  ADS  Google Scholar 

  2. Bohm D.: Quantum theory. Prentice-Hall, Englewood, Cliffs, NJ (1951)

    Google Scholar 

  3. Bell J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  4. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  PubMed  MathSciNet  ADS  Google Scholar 

  5. Bennet C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  6. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MATH  PubMed  MathSciNet  ADS  Google Scholar 

  7. Boumwmeester D., Pan J.W., Mattle K., Eibl M., Weinfurter H., Zeilinger A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  8. Nielsen M.A., Chuang I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  9. Braunstein S.L., Kimble H.J.: Dense coding for continuous variables. Phys. Rev. A 61, 042302–042305 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  10. Barenco A., Deutsch D., Ekert A.K., Jozsa R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett 74, 4083–4086 (1995)

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Divincerzo D.P.: Quantum computation. Science 270, 255–261 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  12. Braunstein S.L., van Loock P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  Google Scholar 

  13. Hald J., Sorenson J.L., Schori C., Polzik E.S.: Spin squeezed atoms: a macroscopic entangled ensemble created by light. Phys. Rev. Lett 83, 1319–1322 (1999)

    Article  ADS  Google Scholar 

  14. Julsgaard B., Kozhekin A., Polzik E.S.: Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Scull M.O.: Correlated spontaneous-emission lasers: quenching of quantum fluctuations in the relative phase angle. Phys. Rev. Lett. 55, 2802–2805 (1985)

    Article  ADS  Google Scholar 

  16. Scully M.O., Zubairy M.S.: Theory of quantum beat laser. Phys. Rev. A 35, 752–758 (1987)

    Article  PubMed  ADS  Google Scholar 

  17. Xiong H., Scully M.O., Zubairy M.S.: Correlated spontaneous emission laser as an entanglement amplifier. Phys. Rev. Lett. 94, 023601–023604 (2005)

    Article  PubMed  ADS  Google Scholar 

  18. Tan H.-T., Zhu S.-Y., Zubairy M.S.: Continuous-variable entanglement in a correlated emission laser. Phys. Rev. A 72, 022305–22308 (2005)

    Article  ADS  Google Scholar 

  19. Zhou L., Xiong H., Zubairy M.S.: Single atom as a macroscopic entanglement source. Phys. Rev. A 74, 022321–022325 (2006)

    Article  ADS  Google Scholar 

  20. Bergou J., Orszag M., Scully M.O.: Correlated-emission laser: phase noise quenching via coherent pumping and the effect of atomic motion. Phys. Rev. A 38, 768–772 (1988)

    Article  PubMed  ADS  Google Scholar 

  21. Scully M.O., Wodkiewicz K., Zubairy M.S., Bergou J., Lu N., Meyer ter Vehn J.: Two-photon correlated–spontaneous-emission laser: quantum noise quenching and squeezing. Phys. Rev. Lett. 60, 1832–1835 (1988)

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Ansari N.A., Gea-Banacloche J., Zubairy M.S.: Phase-sensitive amplification in a three-level atomic system. Phys. Rev. A 41, 5179–5186 (1990)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Blockley C.A., Walls D.F.: Intensity fluctuations in a frequency down-conversion process with three-level atoms. Phys. Rev. A 43, 5049–5056 (1991)

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Schmidt E.: Zur Theorie der linearen und nichtlinearen integralgleichungen. Math. Annalen. 63, 433–476 (1907)

    Article  Google Scholar 

  25. Simon R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726–2729 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Duan L.M., Giedke G., Cirac J.I., Zoller P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722–2725 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Shchukin W., Vogel E.: Inseparability criteria for continuous bipartite quantum states. Phys. Rev. Lett. 95, 230502–230505 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Shchukin W., Vogel E.: Conditions for multipartite continuous-variable entanglement. Phys. Rev. A 74, 030302–030305(R) (2006)

    Article  MathSciNet  ADS  Google Scholar 

  29. Hillery M., Zubairy M.S.: Entanglement conditions for two-mode states. Phys. Rev. Lett. 96, 050503–050506 (2006)

    Article  PubMed  MathSciNet  ADS  Google Scholar 

  30. Hillery M., Zubairy M.S.: Entanglement conditions for two-mode states: applications. Phys. Rev. A 74, 032333–032340 (2006)

    Article  ADS  Google Scholar 

  31. Agarwal G.S., Biswas A.: Inseparability inequalities for higher order moments for bipartite systems. New J. Phys. 7, 211–217 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  32. Nha, J., Kim, H.: Entanglement criteria via the uncertainty relations in su(2) and su(1,1) algebras: detection of non-Gaussian entangled states. Phys. Rev. A 74, 012317–012323 (2006)

    Article  ADS  Google Scholar 

  33. Guhne O., Lutkenhaus N.: Nonlinear entanglement witnesses. Phys. Rev. Lett. 96, 170502–170505 (2006)

    Article  PubMed  ADS  Google Scholar 

  34. Giovannetti V., Mancini S., Vitali D., Tombesi P.: Characterizing the entanglement of bipartite quantum systems. Phys. Rev. A 67, 022320–022324 (2003)

    Article  ADS  Google Scholar 

  35. Adesso G., Illuminati F.: Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A 40, 7821–7880 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Fu-li Li., Zubairy M.S.: Quantum Entanglement: Concepts and Criteria. In: Chen, G., Kauffman, L., Lomonaco S., J. (eds) Mathematics of quantum computation and quantum technology, pp. 349–385. Chapman & Hall/CRC, New York (2007)

    Google Scholar 

  37. Qamar S., Ghafoor F., Hillery M., Zubairy M.S.: Quantum beat laser as a source of entangled radiation. Phys. Rev. A 77, 062308–062314 (2008)

    Article  ADS  Google Scholar 

  38. Qamar S., Al-Amri M., Zubairy M.S.: Entanglement in a bright light source via Raman-driven coherence. Phys. Rev. A 79, 013831–013837 (2009)

    Article  ADS  Google Scholar 

  39. Qamar S., Al-Amri M., Zubairy M.S.: Entanglement in a bright light source via Raman-driven coherence. ibid 79, 039902(E) (2009)

    ADS  Google Scholar 

  40. Qamar S., Al-Amri M., Qamar S., Zubairy M.S.: Entangled radiation via a Raman-driven quantum beat laser. Phys. Rev. A 80, 033818–033825 (2009)

    Article  Google Scholar 

  41. Qamar S., Xiong H., Zubairy M.S.: Influence of pump-phase fluctuations on entanglement generation using a ecorrelated spontaneous-emission laser. Phys. Rev. A 75, 062305–062314 (2007)

    Article  ADS  Google Scholar 

  42. Qamar, S., Qamar, S., Zubairy M. S.: Effect of phase fluctuations on entanglement generation in a correlated emission laser with injected coherence. Quo vadis Quantum Optics, Opt. Comm. (2009) (accepted)

  43. Mckeever J., Boca A., Boozer A.D., Buck J.R., Kimble H.J.: Experimental realization of a one-atom laser in the regime of strong coupling. Nature 425, 268–271 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Kiffner M., Zubairy M.S., Evers J., Keitel C.H.: Two-mode single-atom laser as a source of entangled light. Phys. Rev. A 75, 033816–033823 (2007)

    Article  ADS  Google Scholar 

  45. Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  MATH  CAS  PubMed  MathSciNet  ADS  Google Scholar 

  46. Yuen H.P., Shapiro J.H.: Optical communication with two-photon coherent states-part Ill: quantum measurements realizable with photoemissive detectors. IEEE Trans. Inf. Theory 26, 78–92 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Sully M.O., Zubairy M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  48. Ohtsu M., Liou K.-Y.: Correlated spontaneous emission between two longitudinal modes in an extended-cavity semiconductor laser. Appl. Phys. Lett. 52, 10–12 (1988)

    Article  CAS  ADS  Google Scholar 

  49. Winters M.P., Hall J.L., Toschek P.E.: Correlated spontaneous emission in a Zeeman laser. Phys.Rev. Lett. 65, 3116–3119 (1990)

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Meschede D., Walther H., Muller G.: One atom maser. Phys. Rev. Lett. 54, 551–554 (1985)

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Raqithel, G., Wagner, C., Walther, H., Narducci, L.M., Scully, M.O.: Cavity quantum electrodynamics. In: Berman, P. (ed.) Advances in atomic, molecular, and optical physics, supp. 2, pp. 57–121. Academic, New York (1994)

  52. Qamar S., Zhu S.-Y., Zubairy M.S.: Two-photon phase-sensitive amplifier via Raman-driven coherence. Opt. Commun. 147, 274–278 (1998)

    Article  CAS  ADS  Google Scholar 

  53. Rathe U.W., Scully M.O.: Phase coherence and decoherence in the correlated-spontaneous-emission laser. Phys. Rev. A 52, 3193–3200 (1995)

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Lee S.Y., Qamar S., Lee H.W., Zubairy M.S.: Entanglement in a parametric converter. J. Phys. B: At. Mol. Opt. Phys. 41, 145504–145510 (2008)

    Article  ADS  Google Scholar 

  55. Raimond J.M., Brune M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Suhail Zubairy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Amri, M., Qamar, S., Qamar, S. et al. Entanglement in correlated spontaneous emission lasers. Quantum Inf Process 8, 587–605 (2009). https://doi.org/10.1007/s11128-009-0142-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0142-9

Keywords

PACS

Navigation