Abstract
The utility of a five-qubit entangled state for quantum teleportation, quantum state sharing and superdense coding is investigated. The state can be utilized for perfect teleportation and quantum state sharing of an arbitrary single- and two-qubit state. The capacity of superdense coding of the state reaches the “Holevo bound”, which means that five classical bits can be transmitted by sending three qubits. The preparation of the five-qubit state and detection of the multipartite states in cavity QED are discussed. The distinct advantage of the feasible cavity QED technology that we use is insensitive to the thermal field and the cavity decay.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hill S., Wootters W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)
Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)
Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 0323141–03231411 (2003)
Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)
Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)
Yeo Y., Chua W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 0605021–0605024 (2006)
Brown I.D.K., Stepney S., Sudbery A., Braunstein S.L.: Searching for highly entangled multi-qubit states. J. Phys. A 38, 1119–1131 (2005)
Muralidharan S., Panigrahi P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 0323211–0323217 (2008)
Muralidharan, S., Panigrahi, P.K.: Perfect teleportation and superdense coding through an asymmetric five qubit statear. Xiv:0802.3464v1 (2008)
Man Z.X., Xia Y.J., An N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 0523061–0523065 (2007)
Li L., Qiu D.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A 40, 10871–10885 (2007)
Rigolin G., de Oliveira T.R., de Oliveira M.C.: Operational classification and quantification of multipartite entangled states. Phys. Rev. A 74, 0223141–02231413 (2006)
Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operations on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)
Werner R.F.: All teleportation and dense coding schemes. J. Phys. A 34, 7081–7094 (2001)
Karlsson A., Bourennane M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)
Pati A.K.: Assisted cloning and orthogonal complementing of an unknown state. Phys. Rev. A 61, 0223081–0223084 (2000)
Agrawal P., Pati A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 0623201–0623205 (2006)
Peng Z.H., Zou J., Liu X.J.: Scheme for implementing efficient quantum information processing with multiqubitW-class states in cavity QED. J. Phys. B 41, 0655051–0655057 (2008)
Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)
Li Y.M., Zhang K.S., Peng K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420–424 (2004)
Lance A.M., Symul T., Bowen W.P., Senders B.C., Tyc T., Ralon T.C., Lam P.K.: Continuous-variable quantum-state sharing via quantum disentanglement. Phys. Rev. A 71, 0338141–03381411 (2005)
Rauschenbeutel A., Nogues G., Osnaghi S., Bertet P., Brune M., Raimond J.M., Haroche S.: Step-by-step engineered multiparticle entanglement. Science 288, 2024 (2000)
Raimond J.M. et al.: Colloquium: manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)
Riebe M. et al.: Deterministic quantum teleportation with atoms. Nature (London) 429, 734–737 (2004)
Barrett M.D. et al.: Deterministic quantum teleportation of atomic qubits. Nature (London) 429, 737–738 (2000)
Osnaghi S., Bertet P., Auffeves A., Maioli P., Brune M., Raimond J.M., Haroche S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 0379021–0379024 (2001)
Zheng S.B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66, 0603031–0603034 (2002)
Ye L., Guo G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71, 0343041–0343043 (2005)
Ye, L., Liu, Q.: Implement a measurement of GHZ entanglement for a multipartite system via cavity QED. Opt. Commun. (2008). doi:101016/j.optcom.2008.03.004
Rigolin G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 0323031–0323035 (2005)
Deng F.G., Li X.H., Li C.Y., Zhou P., Zhou H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 0443011–0443014 (2005)
Bruss D., D’Ariano G.M., Lewenstein M., Macchiavello C., de Sen A.: Distributed quantum dense coding. Phys. Rev. A 93, 2105011–2105014 (2004)
Ye L., Yu L.B., Guo G.C.: Generation of entangled states in cavity QED. Phys. Rev. A 72, 0343041–0343044 (2005)
Munhoz P.P. et al.: Spontaneous emission and teleportation in cavity QED. J. Phys. B: At. Mol. Opt. Phys. 38, 3875–3884 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Qiu, L. Quantum information processing through a genuine five-qubit entangled state in cavity QED. Quantum Inf Process 9, 643–662 (2010). https://doi.org/10.1007/s11128-010-0164-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-010-0164-3