Abstract
We present two measures of distance between quantum processes which can be measured directly in laboratory without resorting to process tomography. The measures are based on the superfidelity, introduced recently to provide an upper bound for quantum fidelity. We show that the introduced measures partially fulfill the requirements for distance measure between quantum processes. We also argue that they can be especially useful as diagnostic measures to get preliminary knowledge about imperfections in an experimental setup. In particular we provide quantum circuit which can be used to measure the superfidelity between quantum processes. We also provide a physical interpretation of the introduced metrics based on the continuity of channel capacity.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bengtsson I., Życzkowski K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)
Hayashi M.: Quantum Information: An Introduction. Springer, Berlin (2006)
Leonhardt U.: Discrete Wigner function and quantum-state tomography. Phys. Rev. A 53(5), 2998–3013 (1996)
Jones K.R.W.: Principles of quantum inference. Ann. Phys. 207(1), 140–170 (1991)
Poyatos J.F., Cirac J.I., Zoller P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78(2), 390–393 (1997)
D’Ariano G.M., Lo Presti P.: Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. Phys. Rev. Lett. 86(19), 4195–4198 (2001)
Acín A.: Statistical distinguishability between unitary operations. Phys. Rev. Lett. 87(17), 177901 (2001)
D’Ariano G.M., Sacchi M.F., Kahn J.: Minimax discrimination of two Pauli channels. Phys. Rev. A 72(5), 1 (2005)
Wang G., Ying M.: Unambiguous discrimination among quantum operations. Phys. Rev. A 73(4), 042301 (2006)
Watrous J.: Distinguishing quantum operations having few Kraus operators. Quantum Inf. Comput. 8(8–9), 0819–0833 (2008)
Chiribella G., D’Ariano G.M., Perinotti P.: Memory effects in quantum channel discrimination. Phys. Rev. Lett. 101, 180501 (2008)
Gilchrist A., Langford N.K., Nielsen M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71(6), 062310 (2005)
Belavkin V.P., D’Ariano G.M., Raginsky M.: Operational distance and fidelity for quantum channels. J. Math. Phys. 46, 062106 (2005)
Miszczak J.A., Puchała Z., Horodecki P., Uhlmann A., Życzkowski K.: Sub- and super-fidelity as bounds for quantum fidelity. Quantum Inf. Comput. 9(1&2), 0103–0130 (2009)
Mendonca P.E.M.F., Napolitano R.d.J., Marchiolli M.A., Foster C.J., Liang Y.C.: An alternative fidelity measure for quantum states. Phys. Rev. A 78, 052330 (2008)
Puchała Z., Miszczak J.A.: Bound on trace distance based on superfidelity. Phys. Rev. A 79, 024302 (2009)
Ekert A.K., Alves C.M., Oi D.K.L., Horodecki M., Horodecki P., Kwek L.C.: Direct estimations of linear and nonlinear functionals of a quantum state. Phys. Rev. Lett. 88(21), 217901 (2002)
Nielsen A., Chuang I.L.: Quantum Computation and Quantum Information. Quantum Computation and Quantum Information Cambridge University Press, Cambridge, UK (2000)
Banaszek, K.: Private communication
Mohseni M., Rezakhani A.T., Lidar D.A.: Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A 77(3), 32322 (2008)
Leung D., Smith G.: Continuity of quantum channel capacities. Comm. Math. Phys. 292, 201–215 (2009)
Kitaev A.Y., Shen A.H., Vyalyi M.N.: Classical and Quantum Computation Graduate Studies in Mathematics, vol. 47. American Mathematical Society, Providence (2002)
Aharonov, D. Kitaev, A., Nisan, N.: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computation (STOC). pp. 20–30. ArXiv:quant-ph/9806029 (1998)
Fujiwara A., Algoet P.: One-to-one parametrization of quantum channels. Phys. Rev. A 59(5), 3290–3294 (1999)
Bruzda W., Cappellini V., Sommers H.J., Życzkowski K.: Random quantum operations. Phys. Lett. A 373(3), 320–324 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Puchała, Z., Miszczak, J.A., Gawron, P. et al. Experimentally feasible measures of distance between quantum operations. Quantum Inf Process 10, 1–12 (2011). https://doi.org/10.1007/s11128-010-0166-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-010-0166-1