Skip to main content

Advertisement

Log in

Quantifying entanglement of two relativistic particles using optimal entanglement witness

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In a recent paper, it was shown that the projections of a relativistic spin operator (RSO) massive spin-\({\frac{1}{2}}\) particle on a world-vector which can be in timelike or null tetrad direction are proportional to the helicity or Bargman-Wigner (BW) qubit, respectively. Here we consider Lorentz transformations of two-particle states, which have been constructed both in helicity basis. For convenience, instead of using the superposition of momenta we use only two momentum eigenstates (p 1 and p 2) for each particle. Consequently, in 2D momentum subspace we describe the structure of one particle in terms of the four-qubit system. We present a new approach to quantification of relativistic entanglement based on entanglement witness (EW), which is obtained by a new method of convex optimization. In addition, Lorentz invariance of entanglement using BW qubit is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  CAS  Google Scholar 

  2. Peres A., Scudo P.F., Terno D.R.: Quantum entropy and special relativity. Phys. Rev. Lett. 88, 230402 (2002)

    Article  ADS  PubMed  MathSciNet  CAS  Google Scholar 

  3. Harshman N.L.: Basis states for relativistic dynamically entangled particles. Phys. Rev. A 71, 022312 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Lee D., Chang-Young E.: Quantum entanglement under Lorentz boost. New J. Phys. 67, x022312 (2004)

    Google Scholar 

  5. Caban P., Rembielinski J.: Lorentz-covariant reduced spin density matrix and Einstein–Podolsky–Rosen–Bohm correlations. Phys. Rev. A 72, 012103 (2005)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Bartlett S.D., Terno D.R.: Relativistically invariant quantum information. Phys. Rev. A 71, 012302 (2005)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Wigner E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149 (1939)

    Article  MathSciNet  Google Scholar 

  8. Gingrich R.M., Adami C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, 27 (2002)

    Article  CAS  Google Scholar 

  9. Terashimo, H., Ueda, M.: Einstein-Podolsky-Rosen correlation seen from moving observers. Quantum Info. Comput. 3’ 224-228 (2003)

  10. Czachor M.: Einstein–Podolsky–Rosen–Bohm experiment with relativistic massive particles. Phys. Rev. A 55, 72 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Alsing P.M., Milburn G.J.: Lorentz Invariance of Entanglement. Quantum Info. Comput. 2, 487 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Ahn D., Lee H.-J., Moon Y.H., Hwang S.W.: Relativistic entanglement and Bell’s inequality. Phys. Rev. A 67, 012103 (2003)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Jafarizadeh M.A., Sufiani R.: Bell-states diagonal entanglement witnesses for relativistic and non-relativistic multispinor systems in arbitrary dimensions. Phys. Rev. A 77, 012105 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Lamata L., Martin-Delgado M.A.: Relativity and Lorentz invariance of entanglement distillability, E. Solano. Phys. Rev. Lett. 97, 250502 (2006)

    Article  ADS  PubMed  CAS  MathSciNet  Google Scholar 

  15. Lamata L., Leon J., Salgado D.: Spin entanglement loss by local correlation transfer to the momentum. Phys. Rev. A 73, 052325 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Cai J.-M., Zhou Z.-W., Yuan Y.-F., Guo G.-C.: Quantum decoherence modulated by special relativity. Phys. Rev. A 76, 042101 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Doukas J., Hollenberg L.C.L.: Loss of spin entanglement for accelerated electrons in electric and magnetic fields. Phys. Rev. A 79, 052109 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Landulfo A.G.S., Matsas G.E.A.: Sudden death of entanglement and teleportation fidelity loss via the Unruh effect. Phys. Rev. A 80, 032315 (2009)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Czachor M., Wilczewski M.: Relativistic BB84, relativistic errors, and how to correct them. Phys. Rev. A 68, 010302(R) (2003)

    Article  ADS  CAS  Google Scholar 

  20. Czachor, M.: arXiv:1002.0066v3

  21. Czachor M.: Teleportation seen from space-time. Class. Quant. Grav. 25, 205003 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Czachor, M.: In Photon and Poincare Group, edited by V. V. Dvoeglazov, (Nova, NewYork, 1999) 32, hep-th/9701135

  23. Peres A.: Separability criterion for density matrices A. Peres. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MATH  PubMed  CAS  MathSciNet  Google Scholar 

  24. Terhal B.M.: Bell inequalities and the separability criterion. Phys. Lett. A 271, 319 (2000)

    Article  ADS  MATH  CAS  MathSciNet  Google Scholar 

  25. Brandao F.G.S.L.: Quantifying entanglement with witness operators. Phys. Rev. A 72, 022310 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Bertlmann R.A., Durstberger K., Hiesmayr B.C., Krammer Ph.: Optimal entanglement witnesses for qubits and qutrits. Phys. Rev. A 72, 052331 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Bertlmann R.A., Narnhofer H., Thirring W.: A geometric picture of entanglement and Bell inequalities. Phys. Rev. A. 66, 032319 (2002)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Jafarizadeh M.A., Mahdian M.: Spin-momentum correlation in relativistic single particle quantum states. IJQI 8(3), 517–528 (2010)

    MATH  Google Scholar 

  29. Jafarizadeh M.A., Rezaee M., Seyed Yagoobi S.K.A.: Bell states diagonal entanglement witnesses. Phys. Rev. A 72, 062106 (2005)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Jafarizadeh M.A., Rezaee M., Ahadpour S.: Generalized qudit Choi maps. Phys. Rev. A 74, 042335 (2006)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. Jafarizadeh M.A., Najarbashi G., Habibian H.: Manipulating multi-qudit entanglement witnesses by using linear programming. Phys. Rev. A 75, 052326 (2007)

    Article  ADS  CAS  Google Scholar 

  32. Jafarizadeh M.A., Najarbashi G., Akbari Y., Habibian H.: Multi-qubit stabilizer and cluster entanglement witnesses. Eur. Phys. J. D 47, 233 (2008)

    Article  ADS  CAS  MathSciNet  Google Scholar 

  33. Clauser J.F., Horne M.A., Shimony A., Holt R.A.: Proposed experiment to test local hidden-variable theorie. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  34. Hyllus P., Guehne O., Brus D., Lewenstein M.: Relations between entanglement witnesses and Bell inequalities. Phys. Rev. A 72, 012321 (2005)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  35. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  CAS  Google Scholar 

  36. Rudin W.: Functional Analysis. McGraw-Hill, Singapore (1991)

    MATH  Google Scholar 

  37. Lewenstein, M., Bru, D., Cirac, J.I., Kraus, B., Kus, M., Samsonowicz, J., Sanpera, A., Tarrach, R.: Separability and distilability in composite quantum systems. J. Mod. Opt. 47, 2841 (2000)

    Google Scholar 

  38. Vianna R.O., Doherty A.C.: Study of the Distillability of Werner States Using Entanglement Witnesses and Robust Semidefinite Programs. Phys. Rev. A 74, 052306 (2006)

    Article  ADS  CAS  Google Scholar 

  39. Pfeifer W.: The Lie Algebras su(N), An Introduction. Birkhauser, Switzerland (2003)

    Book  MATH  Google Scholar 

  40. Fei S.-M., Jost J., Li-Jost X., Wang G.-F.: Entanglement of formation for a class of quantum states. Phys. Lett. A 310, 333–338 (2003)

    Article  ADS  MATH  CAS  MathSciNet  Google Scholar 

  41. Penrose R., Rindler W.: Spinors and Space-Time, vol.1: Two-Spinor Calculus and Relativistic Fields. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  42. Weinberg S.: The Quantum Theory of Fields I. Cambridge University Press, NY (1995)

    Google Scholar 

  43. Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  44. Hartmann A.K., Rieger H.: Optimization Algorithms in Physics. Wiley, Berlin (2002)

    MATH  Google Scholar 

  45. Chong E.K.P., Zak S.H.: An Introduction to Optimization. 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Jafarizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafarizadeh, M.A., Mahdian, M. Quantifying entanglement of two relativistic particles using optimal entanglement witness. Quantum Inf Process 10, 501–518 (2011). https://doi.org/10.1007/s11128-010-0206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0206-x

Keywords