Skip to main content
Log in

Exploiting Kondo spin chains for generating long range distance independent entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the entanglement properties of the Kondo spin chain when it is prepared in its ground state as well as its dynamics following a single bond quench. We show that a true measure of entanglement such as negativity enables to characterize the unique features of the gapless Kondo regime. We determine the spatial extent of the Kondo screening cloud and propose an ansatz for the ground state in the Kondo regime accessible to this spin chain; we also demonstrate that the impurity spin is indeed maximally entangled with the Kondo cloud. We exploit these features of the entanglement in the gapless Kondo regime to show that a single local quench at one end of a Kondo spin chain may always induce a fast and long lived oscillatory dynamics, which establishes a high quality entanglement between the individual spins at the opposite ends of the chain. This entanglement is a footprint of the presence of the Kondo cloud and may be engineered so as to attain—even for very large chains—a constant high value independent of the length; in addition, it is thermally robust. Moreover, we show that high entanglement between very distant boundary spins is generated by suddenly connecting two long Kondo spin chains. We show that this procedure provides an efficient way to route entanglement between multiple distant sites. To better evidence the remarkable peculiarities of the Kondo regime, we carry a parallel analysis of the entanglement properties of the Kondo spin chain model in the gapped dimerised regime where these remarkable features are absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sorensen, E.S., Chang, M.S., Laflorencie, N., Affleck, I.: Quantum impurity entanglement. J. Stat. Mech. P08003 (2007). doi:10.1088/1742-5468/2007/08/P08003

  2. Sorensen, E.S., Chang, M.S., Laflorencie, N., Affleck, I.: Impurity entanglement entropy and the Kondo screening cloud. J. Stat. Mech. L01001 (2007). doi:10.1088/1742-5468/2007/01/L01001

  3. Affleck, I.: Lecture Notes, Les Houches, arXiv:0809.3474 (2008). http://arxiv.org/abs/0809.3474

  4. Bayat, A., Sodano, P., Bose, S.: Negativity as the entanglement measure to probe the Kondo regime in the spin-chain Kondo model, Phys. Rev. B 81, 064429 (2010). doi:10.1103/PhysRevB.81.064429. http://link.aps.org/doi/10.1103/PhysRevB.81.064429

  5. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002). doi:10.1103/PhysRevA.65.032314. http://link.aps.org/doi/10.1103/PhysRevA.65.032314

  6. Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005). doi:10.1103/PhysRevLett.95.090503. http://link.aps.org/doi/10.1103/PhysRevLett.95.090503

  7. Hewson, A.: The Kondo Model to Heavy Fermions. Cambridge (1997)

  8. Pereira, R.G., Laflorencie, N., Affleck, I., Halperin, B.I.: Kondo screening cloud and charge staircase in one-dimensional mesoscopic devices. Phys. Rev. B 77, 125327 (2008). doi:10.1103/PhysRevB.77.125327. http://link.aps.org/doi/10.1103/PhysRevB.77.125327

  9. Sodano, P., Bayat, A., Bose, S.: Kondo cloud mediated long-range entanglement after local quench in a spin chain. Phys. Rev. B 81, 100412(R) (2010). doi:10.1103/PhysRevB.81.100412. http://link.aps.org/doi/10.1103/PhysRevB.81.100412

  10. Laflorencie, N., Sorensen, E.S., Affleck, I.: The Kondo effect in spin chains. J. Stat. Mech. P02007 (2008). doi:10.1088/1742-5468/2008/02/P02007. http://iopscience.iop.org/1742-5468/2008/02/P02007?fromSearchPage=true

  11. Laflorencie, N., Srensen, E.S., Chang, M.S., Affleck, I.: Boundary effects in the critical scaling of entanglement entropy in 1D systems. Phys. Rev. Lett. 96, 100603 (2006). doi:10.1103/PhysRevLett.96.100603. http://link.aps.org/doi/10.1103/PhysRevLett.96.100603

    Google Scholar 

  12. Majumdar, C.K., Ghosh, D.K.: Antiferromagnetic model with known ground state. J. Phys. C: Solid State Phys. 3, 911 (1969). doi:10.1088/0022-3719/3/4/019. http://iopscience.iop.org/0022-3719/3/4/019

  13. Schollwock, U., Jolicoeur, T., Garel, T.: Onset of incommensurability at the valence-bond-solid point in the S=1 quantum spin chain. Phys. Rev. B 53, 3304 (1996). doi:10.1103/PhysRevB.53.3304. http://link.aps.org/doi/10.1103/PhysRevB.53.3304

  14. Bayat, A., Bose, S., Sodano, P.: Entanglement routers using macroscopic singlets. Phys. Rev. Lett. 105, 187204 (2010). doi:10.1103/PhysRevLett.105.187204. http://link.aps.org/doi/10.1103/PhysRevLett.105.187204

    Google Scholar 

  15. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008). doi:10.1103/RevModPhys.80.517. http://link.aps.org/doi/10.1103/RevModPhys.80.517

    Google Scholar 

  16. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001). doi:10.1103/PhysRevLett.87.017901. http://link.aps.org/doi/10.1103/PhysRevLett.87.017901

  17. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition, Nature 416, 608 (2002). doi:10.1038/416608a. http://www.nature.com/nature/journal/v416/n6881/full/416608a.html

  18. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002). doi:10.1103/PhysRevA.66.032110. http://link.aps.org/doi/10.1103/PhysRevA.66.032110

  19. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett 90, 227902 (2003). doi:10.1103/PhysRevLett.90.227902. http://link.aps.org/doi/10.1103/PhysRevLett.90.227902

  20. Jin, B.Q., Korepin, V.E.: Quantum spin chain, Toeplitz determinants and Fisher–Hartwig Conjecture. J. Stat. Phys. 116, 79–95 (2004). doi:10.1023/B:JOSS.0000037230.37166.42. http://www.springerlink.com/content/p0128268k5530t71/

    Google Scholar 

  21. Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech. P06002 (2004). doi:10.1088/1742-5468/2004/06/P06002. http://iopscience.iop.org/1742-5468/2004/06/P06002?fromSearchPage=true

  22. Le Hur, K., Doucet-Beaupre, P., Hofstetter, W.: Entanglement and criticality in quantum impurity systems. Phys. Rev. Lett. 99, 126801 (2007). doi:10.1103/PhysRevLett.99.126801. http://link.aps.org/doi/10.1103/PhysRevLett.99.126801

  23. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993). doi:10.1103/PhysRevLett.70.1895. http://link.aps.org/doi/10.1103/PhysRevLett.70.1895

    Google Scholar 

  24. Campos Venuti, L., Degli Esposti Boschi, C., Roncaglia, M.: Long-distance entanglement in spin systems. Phys. Rev. Lett. 96, 247206 (2006). doi:10.1103/PhysRevLett.96.247206. http://link.aps.org/doi/10.1103/PhysRevLett.96.247206

    Google Scholar 

  25. Campos Venuti, L., Giampaolo, S.M., Illuminati, F., Zanardi, P.: Long-distance entanglement and quantum teleportation in XX spin chains. Phys. Rev. A 76, 052328 (2007). doi:10.1103/PhysRevA.76.052328. http://link.aps.org/doi/10.1103/PhysRevA.76.052328

  26. Campos Venuti, L., Degli Esposti Boschi, C. Roncaglia, M.: Qubit teleportation and transfer across antiferromagnetic spin chains. Phys. Rev. Lett. 99, 060401 (2007). doi:10.1103/PhysRevLett.99.060401. http://link.aps.org/doi/10.1103/PhysRevLett.99.060401

  27. Hartmann, M.J., Reuter, M.E., Plenio, M.B.: Excitation and entanglement transfer versus spectral gap. New J. Phys. 8, 94 (2006). doi:10.1088/1367-2630/8/6/094. http://iopscience.iop.org/1367-2630/8/6/094

  28. Li, Y., et al.: Quantum-state transmission via a spin ladder as a robust data bus. Phys. Rev. A 71, 022301 (2005). doi:10.1103/PhysRevA.71.022301. http://link.aps.org/doi/10.1103/PhysRevA.71.022301

  29. Wojcik, A., et al.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005). doi:10.1103/PhysRevA.72.034303. http://link.aps.org/doi/10.1103/PhysRevA.72.034303

  30. Wichterich, H., Bose, S.: Exploiting quench dynamics in spin chains for distant entanglement and quantum communication. Phys. Rev. A 79, 060302(R) (2009). doi:10.1103/PhysRevA.79.060302. http://link.aps.org/doi/10.1103/PhysRevA.79.060302

  31. Galve, F., et al.: Entanglement resonance in driven spin chains. Phys. Rev. A 79, 032332 (2009). doi:10.1103/PhysRevA.79.032332. http://link.aps.org/doi/10.1103/PhysRevA.79.032332

  32. Zueco, D., et al.: Quantum router based on ac control of qubit chains. Phys. Rev. A 80, 042303 (2009). doi:10.1103/PhysRevA.80.042303. http://link.aps.org/doi/10.1103/PhysRevA.80.042303

  33. Pemberton-Ross, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011). doi:10.1103/PhysRevLett.106.020503. http://link.aps.org/doi/10.1103/PhysRevLett.106.020503

    Google Scholar 

  34. Audenaert, K., Eisert, J., Plenio, M.B., Werner, R.F.: Entanglement properties of the harmonic chain. Phys. Rev. A 66, 042327 (2002). doi:10.1103/PhysRevA.66.042327. http://link.aps.org/doi/10.1103/PhysRevA.66.042327

  35. Kofler, J., Vedral, V., Kim, M.S., Brukner, C.: Entanglement between collective operators in a linear harmonic chain. Phys. Rev. A 73, 052107 (2006). doi:10.1103/PhysRevA.73.052107. http://link.aps.org/doi/10.1103/PhysRevA.73.052107

  36. Wichterich, H., Molina-Vilaplana, J., Bose, S.: Scaling of entanglement between separated blocks in spin chains at criticality, Phys. Rev. A 80, 010304(R) (2009). doi:10.1103/PhysRevA.80.010304. http://link.aps.org/doi/10.1103/PhysRevA.80.010304

  37. Marcovitch, S., Retzker, A., Plenio, M.B., Reznik, B.: Critical and noncritical long-range entanglement in Klein–Gordon fields. Phys. Rev. A 80, 012325 (2009). doi:10.1103/PhysRevA.80.012325. http://link.aps.org/doi/10.1103/PhysRevA.80.012325

  38. White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992). doi:10.1103/PhysRevLett.69.2863. http://link.aps.org/doi/10.1103/PhysRevLett.69.2863

    Google Scholar 

  39. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993). doi:10.1103/PhysRevB.48.10345. http://link.aps.org/doi/10.1103/PhysRevB.48.10345

  40. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). doi:10.1103/PhysRevLett.80.2245. http://link.aps.org/doi/10.1103/PhysRevLett.80.2245

    Google Scholar 

  41. Sorensen, E.S., Affleck, I.: Scaling theory of the Kondo screening cloud. Phys. Rev. B 53, 9153 (1996). doi:10.1103/PhysRevB.53.9153. http://link.aps.org/doi/10.1103/PhysRevB.53.9153

  42. Feiguin, A.E., White, S.R.: Time-step targeting methods for real-time dynamics using the density matrix renormalization group. Phys. Rev. B 72, 020404 (2005). doi:10.1103/PhysRevB.72.020404. http://link.aps.org/doi/10.1103/PhysRevB.72.020404

  43. Porras, D., Cirac, J.I.: Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004). doi:10.1103/PhysRevLett.92.207901. http://link.aps.org/doi/10.1103/PhysRevLett.92.207901

    Google Scholar 

  44. Mintert, F., Wunderlich, C.: Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87. 257904 (2001). doi:10.1103/PhysRevLett.87.257904. http://link.aps.org/doi/10.1103/PhysRevLett.87.257904

  45. Friedenauer, A., et al.: Simulating a quantum magnet with trapped ions. Nat. Phys. 4, 757 (2008). doi:10.1038/nphys1032. http://www.nature.com/nphys/journal/v4/n10/full/nphys1032.html

  46. Ciaramicoli, G., Marzoli, I., Tombesi, P.: Spin chains with electrons in Penning traps. Phys. Rev. A 75, 032348 (2007). doi:10.1103/PhysRevA.75.032348. http://link.aps.org/doi/10.1103/PhysRevA.75.032348

  47. Kane, B.E.: A silicon-based nuclear spin quantum computer, Nature 393, 133 (1998). doi:10.1038/30156. http://www.nature.com/nature/journal/v393/n6681/full/393133a0.html

  48. Giuliano, D., Sodano, P.: Y-junction of superconducting Josephson chains, Nucl. Phys. B 811, 395(2009). doi:10.1016/j.nuclphysb.2008.11.011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Bayat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayat, A., Sodano, P. & Bose, S. Exploiting Kondo spin chains for generating long range distance independent entanglement. Quantum Inf Process 11, 89–112 (2012). https://doi.org/10.1007/s11128-011-0234-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0234-1

Keywords

Navigation