Skip to main content

Advertisement

Log in

Bipartite entanglement of nonlinear quantum systems in the context of the q-Heisenberg Weyl algebra

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study in detail the degree of entanglement of bipartite system states in the context of q-Heisenberg-Wely algebra. We examine the entanglement properties for two systems of arbitrary deformation parameters q 1 and q 2, defined in entanglement of entangled deformed bosonic coherent states of each of the deformation parameters. For a particular choice of the parameters that specify the coherent states, we give conditions under which bipartite entangled coherent states become maximally entangled. We generalize this formalism to the case of bipartite mixed states using a simplified expression of concurrence in Wootters’ measure of the bipartite entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Information. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  2. Horodecki R. et al.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Plenio M.B. et al.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Mista L., Radim Filip Jr., Furusawa A.: ontinuous-variable teleportation of a negative Wigner function. Phys. Rev. A 82, 012322 (2010)

    Article  ADS  Google Scholar 

  5. Barreiro J.T., Wei T.-C., Kwiat P.G.: Remote preparation of single-photon ‘hybrid’ entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  6. Agrawal P., Pati A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  7. Yin Z.Q. et al.: Security of counterfactual quantum cryptography. Phys. Rev. A 82, 042335 (2010)

    Article  ADS  Google Scholar 

  8. Noh T.G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Mascarenhas E., Marques B., Cunha M.T., Santos M.F.: Continuous quantum error correction through local operations. Phys. Rev. A 82, 032327 (2010)

    Article  ADS  Google Scholar 

  10. Fujiwara Y., Clark D., Vandendriessche P., De Boeck M., Tonchev V.D.: Entanglement-assisted quantum low-density parity-check codes. Phys. Rev. A 82, 042338 (2010)

    Article  ADS  Google Scholar 

  11. Morimae T.: Strong entanglement causes low gate fidelity in inaccurate one-way quantum computation. Phys. Rev. A 81, 060307 (2010)

    Article  ADS  Google Scholar 

  12. Schaffry M. et al.: Quantum metrology with molecular ensembles. Phys. Rev. A 82, 042114 (2010)

    Article  ADS  Google Scholar 

  13. Wootters W.K.: Entanglement of formation and concurrence. Quant. Inform. Comput. 1, 27 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  15. Popescu S., Rohrlich D.: Thermodynamics and the measure of entanglement. Phys. Rev. A 56, R3319 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  16. Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  17. Berrada K., El Baz M., Saif F., Hassouni Y., Mnia S.: Entanglement generation from deformed spin coherent states using a beam splitter. J. Phys. A Math. Theor. 42, 285306 (2009)

    Article  MathSciNet  Google Scholar 

  18. Nielsen M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)

    Article  ADS  Google Scholar 

  19. Gazeau J.-P.: Coherent States in Quantum Physics. Weinheim, Wiley-VCH (2009)

    Book  Google Scholar 

  20. Berrada K. et al.: Generalized Heisenberg algebra coherent states for power-law potentials. Phys. Lett. A 375, 298 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  21. Berrada K., Hassouni Y.: Maximal entanglement of bipartite spin states in the context of quantum algebra. Eur. Phys. J. D. 61, 513 (2010)

    Article  ADS  Google Scholar 

  22. Robles-Perez S., Hassouni Y., Gonzalez-Diaz P.F.: Coherent states in the quantum multiverse. Phys. Lett. B 683, 1 (2010)

    Article  ADS  Google Scholar 

  23. Eleuch H.: Photon statistics of light in semiconductor microcavities. J. Phys. B 41, 055502 (2008)

    Article  ADS  Google Scholar 

  24. Sete Eyob A., Eleuch H.: Interaction of a quantum well with squeezed light: quantum-statistical properties. Phys. Rev. A 82, 043810 (2010)

    Article  ADS  Google Scholar 

  25. Eleuch H., Bennaceur R.: Bennaceur, quantum semiclass. Quantum semiclass. J. Opt. B. 6, 189–195 (2004)

    Article  ADS  Google Scholar 

  26. Ali S.T., Antoine J.P., Gazeau J.P.: Coherent States, Wavelets and Their Generalizations. Springer, New York (2000)

    Book  MATH  Google Scholar 

  27. Glauber R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  28. Glauber R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  29. Perlomov A.M.: Coherent states for Arbitrary Lie Group. Commun. Math. Phys. 26, 222 (1972)

    Article  ADS  Google Scholar 

  30. Perelomov A.: Generalized Coherent States and Their Applications. Springer, New York (1986)

    MATH  Google Scholar 

  31. Solomon A.I.: Group theory of superfluidity. J. Math. Phys. 12, 390 (1971)

    Article  ADS  Google Scholar 

  32. Klauder J.R., Skagertam B.: Application in Physics and Mathematical Physics. World Scientific, Singapore (1985)

    Google Scholar 

  33. Inomata , Kuratsuji H., Gerry C.: Path Integrals and Coherent States of SU(2) And SU(1, 1). World Scientific, Singapore (1992)

    Google Scholar 

  34. Drinfeld, V.G.: Quantum groups. In: Gleason A.M. (ed.) Proceedings of the International Congress of Mathematics, Berkeley vol. I, p. 798. American Mathematicial Society, Providence RI (1986)

  35. Biedenharn L.C.: The quantum group SU q (2) and a q-analogue of the boson operators. J. Phys. A 22, L873 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  36. Macfarlane A.J.: On q-analogues of the quantum harmonic oscillator and the quantum group SU(2) q . J. Phys. A 22, 4581 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Eleuch H., Rachid N.: Autocorrelation function of microcavity-emitting field in the non-linear regime. Eur. Phys. J. D. 57, 259 (2010)

    Article  ADS  Google Scholar 

  38. Man’ko V.I., Marmo G., Solimeno S., Zaccaria F.: Physical nonlinear aspects of classical and quantum q-oscillators. Int. J. Mod. Phys. A. 8, 3577 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Man’ko V.I., Marmo G., Zaccaria F., Sudarshan E.C.G.: f-Oscillators and nonlinear coherent states. Phys. Scr. 55, 528 (1997)

    Article  ADS  Google Scholar 

  40. Bonatsos D., Daskaloyannis C., Kokkotas K.: WKB equivalent potentials for the q-deformed harmonic oscillator. J. Phys. A Math. Gen. 24, L795 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  41. Ballesteros A., Civitarese O., Reboiro M.: Correspondence between the q-deformed harmonic oscillator and finite range potentials. Phys. Rev. C 68, 044307 (2003)

    Article  ADS  Google Scholar 

  42. Dodonov V.V.: Nonclassical states in quantum optics: a squeezed review of the first 75 years. J. Opt. B Quant. Semiclass 4, R1 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  43. Katriel J., Solomon A.I.: Nonideal lasers, nonclassical light, and deformed photon states. Phys. Rev. A 49, 5149 (1994)

    Article  ADS  Google Scholar 

  44. Si-cong J.S., Hong-yi F.: q-Deformed binomial state. Phys. Rev. A 49, 2277 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  45. Berrada K., El Baz M., Saif F., Hassouni Y., Mnia S.: Entanglement generation from deformed spin coherent states using a beam splitter. J. Phys. A: Math. Theor. 42, 285306 (2009)

    Article  MathSciNet  Google Scholar 

  46. Berrada, K., Benmoussa, A., Hassouni, Y.: Entanglement generation with deformed Barut-Girardello coherent states as input states in an unitary beam splitter. Quantum. Inf. Process. doi:10.1007/s11128-010-0215-9 (2010)

  47. Fu H., Wang X., Solomon A.I.: Maximal entanglement of nonorthogonal states: classification. Phys. Lett. A 291, 273 (2001)

    Article  MathSciNet  Google Scholar 

  48. Wang X.: Bipartite entangled non-orthogonal states. J. Phys. A Math. Gen. 35, 165 (2002)

    Article  ADS  MATH  Google Scholar 

  49. Wang X., Sanders B.C., Pan S.-h.: Entangled coherent states for systems with SU(2) and SU(1,1) symmetries. J. Phys. A Math. Gen. 33, 7451 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Gerry Christopher C., Benmoussa A., Hach E.E., Albert J.: Maximal violations of a Bell inequality by entangled spin-coherent states. Phys. Rev. A 79, 022111 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  51. Chakrabarti R., Vasan S.S.: Entanglement via Barut-Girardello coherent state for suq(1, 1) quantum algebra: bipartite composite system. Phys. Lett. A 312, 287 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Marchiolli M.A.: On the q-deformed coherent states of a generalized f-oscillator. Phys. Scr. 73, 62 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. El Bazet M., Hassouni Y.: Special deformed exponential functions leading to more consistent Klauder’s coherent states. Phys. Lett. A 300, 361 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  54. Franz U., Schott R.: Evolution equations and Lévy processes on quantum groups. J. Phys. A Math. Gen. 31, 1395 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Mancini S., Man’Ko V.I.: The survival of quantum coherence in deformed-states superposition. Eur. Lett. 54, 586 (2001)

    Article  ADS  Google Scholar 

  56. Boghosian B.M., Love P.J., Coveney P.V., Karlin I.V., Succi S., Yepez J.: Galilean-invariant lattice-Boltzmann models with H theorem. Phys. Rev. E 68, 025103(R) (2003)

    Article  ADS  Google Scholar 

  57. Marchiolli, M.A., Ruzzi, M., Galetti, D.: Algebraic properties of Rogers-Szegö functions: I. Appl. Quant. Opt. arXiv:0903.4059v2

  58. Mann A., Sanders B.C., Munro W.J.: ell’s inequality for an entanglement of nonorthogonal states. Phys. Rev. A 51, 989 (1995)

    Article  ADS  Google Scholar 

  59. Hillery M., Zubairy M.S.: Entanglement conditions for two-mode states. Phys. Rev. Lett. 96, 050503 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  60. Oikonomou T., Baris Bagci G.: A note on the definition of deformed exponential and logarithm functions. J. Math. Phys. 50, 103301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  61. Sanders B.C., Rice D.A.: Nonclassical fields and the nonlinear interferometer. Phys. Rev. A 61, 013805 (1999)

    Article  ADS  Google Scholar 

  62. Berrada K., Chafik A., Eleuch H., Hassouni Y.: Concurrence in the framwork of coherent states. Quant. Inf. Process. 9, 13 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  64. Ma Z., Zhang F.-L., Deng D.-L., Chen J.-L.: Bounds of concurrence and their relation with fidelity and frontier states. Phys. Lett. A 373, 1616 (2009)

    Article  ADS  MATH  Google Scholar 

  65. Huang Y.-F., Niu X.-L., Gong Y.-X., Li J., Peng L., Zhang C.-J., Zhang Y.-S.: Experimental measurement of lower and upper bounds of concurrence for mixed quantum states. Phys. Rev. A 79, 052338 (2009)

    Article  ADS  Google Scholar 

  66. Eisert J., Plenio M.: A comparison of entanglement measures. J. Mod. Opt. 46, 145–154 (1999)

    ADS  Google Scholar 

  67. Adam M., Andrzej G.: Ordering two-qubit states with concurrence and negativity. Phys. Rev. A 70, 032326 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Berrada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berrada, K., Baz, M.E., Eleuch, H. et al. Bipartite entanglement of nonlinear quantum systems in the context of the q-Heisenberg Weyl algebra. Quantum Inf Process 11, 351–372 (2012). https://doi.org/10.1007/s11128-011-0246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0246-x

Keywords