Skip to main content
Log in

Entanglement mean field theory: Lipkin–Meshkov–Glick Model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entanglement mean field theory is an approximate method for dealing with many-body systems, especially for the prediction of the onset of phase transitions. While previous studies have concentrated mainly on applications of the theory on short-range interaction models, we show here that it can be efficiently applied also to systems with long-range interaction Hamiltonians. We consider the (quantum) Lipkin–Meshkov–Glick spin model, and derive the entanglement mean field theory reduced Hamiltonian. A similar recipe can be applied to obtain entanglement mean field theory reduced Hamiltonians corresponding to other long-range interaction systems. We show, in particular, that the zero temperature quantum phase transition present in the Lipkin–Meshkov–Glick model can be accurately predicted by the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewenstein M., Sanpera A., Ahufinger V., Damski B., SenDe A., Sen U.: Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243 (2007)

    Article  ADS  Google Scholar 

  2. Amico L., Fazio R., Osterloh A., Vedral V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Sachdev S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  4. Chakrabarti B.K., Dutta A., Sen P.: Quantum Ising Phases and Transitions in Transverse Ising Models (Lecture Notes in Physics Monographs). Springer, Berlin (1996)

    Google Scholar 

  5. Osterloh A., Amico L., Falci G., Fazio R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  6. Osborne T., Nielsen M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. Mattis D.C.: The Many-Body Problem World. Scientific, Singapore (1993)

    Book  Google Scholar 

  8. Mahan G.D.: Many-Particle Physics. Scientific, New York (2000)

    Google Scholar 

  9. Wen X.-G.: Quantum Field Theory of Many-Body Systems. Oxford University Press, Oxford (2004)

    Google Scholar 

  10. Ziman J.M.: Principles of the Theory of Solids. Cambridge University Press, Cambridge (1972)

    Google Scholar 

  11. Ashcroft N.W., Mermin N.D.: Solid State Physics. Holt, Rinehert & Winston, New York (1976)

    Google Scholar 

  12. Pathria R.K.: Statistical Mechanics. Butterworth-Heinemann, Oxford (1976)

    Google Scholar 

  13. Van Vleck J.H.: On the Anisotropy of Cubic Ferromagnetic Crystals. Phys. Rev. 52, 1178 (1937)

    Article  ADS  Google Scholar 

  14. Oguchi T.: A theory of antiferromagnetism, II. Prog. Theor. Phys. 13, 148 (1955)

    Article  ADS  MATH  Google Scholar 

  15. Dantziger M., Glinsmann S., Scheffler S., Zimmermann B., Jensen P.J.: In-plane dipole coupling anisotropy of a square ferromagnetic Heisenberg monolayer. Phys. Rev. B 66, 094416 (2002)

    Article  ADS  Google Scholar 

  16. Yamamoto D.: Correlated cluster mean-field theory for spin systems. Phys. Rev. B 79, 144427 (2009)

    Article  ADS  Google Scholar 

  17. Yamamoto D.: Cluster mean-field approach including correlation effects between clusters. J. Phys.: Conf. Ser. 200, 022072 (2010)

    Article  ADS  Google Scholar 

  18. Nonomura Y., Suzuki M.: Cluster-effective-field approximations in frustrated quantum spin systems: CAM analysis of Neel-dimer transition in the S = 1/2 frustrated XXZ chain at the ground state. J. Phys. A 27, 1127 (1994)

    Article  ADS  Google Scholar 

  19. Fisher M.A.: Renormalization group theory: its basis and formulation in statistical physics. Rev. Mod. Phys. 70, 653 (1998)

    Article  ADS  MATH  Google Scholar 

  20. Farnell D.J.J., Bishop R.F.: Quantum magnetism. Lect. Notes Phys. 645, 307 (2004)

    Article  ADS  Google Scholar 

  21. Rüegg A. et al.: Z 2-slave-spin theory for strongly correlated fermions. Phys. Rev. B 81, 155118 (2010) and references therein

    Article  ADS  Google Scholar 

  22. Schollwöck U.: The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  Google Scholar 

  23. Verstraete F., Cirac J.I., Murg V.: Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143 (2008)

    Article  ADS  Google Scholar 

  24. Sen(De) A., Sen U.: Entanglement Mean Field Theory and the Curie-Weiss Law, arXiv:0911:4856

  25. Sen(De) A., Sen U.: Cluster Entanglement Mean Field inspired approach to Criticality in Classical Systems, arXiv:1008:0965

  26. Lipkin H.J., Meshkov N., Glick A.J.: Validity of many-body approximation methods for a solvable model : (I). Exact solutions and perturbation theory. Nucl. Phys. 62, 188 (1965)

    Article  MathSciNet  Google Scholar 

  27. Meshkov N., Glick A.J., Lipkin H.J.: Validity of many-body approximation methods for a solvable model:(II). Linearization procedures. Nucl. Phys. 62, 199 (1965)

    Article  MathSciNet  Google Scholar 

  28. Glick A.J., Lipkin H.J., Meshkov N.: Validity of many-body approximation methods for a solvable model : (III). Diagram summations. Nucl. Phys. 62, 211 (1965)

    Article  MathSciNet  Google Scholar 

  29. Botet R., Jullien R., Pfeuty P.: Size scaling for infinitely coordinated systems. Phys. Rev. Lett 49, 478 (1982)

    Article  ADS  Google Scholar 

  30. Botet R., Jullien R.: Large-size critical behavior of infinitely coordinated systems. Phys. Rev. B 28, 3955 (1983)

    Article  ADS  Google Scholar 

  31. Sarandy M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  32. Ma J., Wang X., Gu S.-J.: Many-body reduced fidelity susceptibility in Lipkin-Meshkov-Glick model. Phys. Rev. E 80, 021124 (2009)

    Article  ADS  Google Scholar 

  33. Brown W.G., Viola L.: Convergence rates for arbitrary statistical moments of random quantum circuits. Phys. Rev. Lett. 104, 250501 (2010)

    Article  ADS  Google Scholar 

  34. Wichterich H., Vidal J., Bose S.: Universality of the negativity in the Lipkin-Meshkov-Glick model. Phys. Rev. A 81, 032311 (2010) and references therein

    Article  ADS  Google Scholar 

  35. Sen(De) A., Sen U.: Simulating quantum dynamics with entanglement mean field theory. J. Phys.: Conf. Ser. 297, 012018 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Sen(De).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen(De), A., Sen, U. Entanglement mean field theory: Lipkin–Meshkov–Glick Model. Quantum Inf Process 11, 675–683 (2012). https://doi.org/10.1007/s11128-011-0279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0279-1

Keywords

Navigation