Skip to main content
Log in

An atom–molecule platform for quantum computing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a combined atom–molecule system for quantum information processing in individual traps, such as provided by optical lattices. In this platform, different species of atoms—one atom carrying a qubit and the other enabling the interaction—are used to store and process quantum information via intermediate molecular states. We show how gates, initialization, and readout operations could be implemented using this approach. In particular, we describe in some detail the implementation of a two-qubit phase gate in which a pair of atoms is transferred into the ground rovibrational state of a polar molecule with a large dipole moment, thus allowing atoms transferred into molecules to interact via their dipole-dipole interaction. We also discuss how the reverse process could be used as a non-destructive readout tool of molecular qubit states. Finally, we generalize these ideas to use a decoherence-free subspace for qubit encoding to minimize the decoherence due to magnetic field fluctuations. In this case, qubits will be encoded into field-insensitive states of two identical atoms, while a third atom of a different species will be used to realize a phase gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sorensen A.S., van der Wal C.H., Childress L.I., Lukin M.D.: Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett. 92, 063601 (2004)

    Article  ADS  Google Scholar 

  2. Rabl P., DeMille D., Doyle J.M., Lukin M.D., Schoelkopf R.J., Zoller P.: Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)

    Article  ADS  Google Scholar 

  3. Tordrup K., Molmer K.: Quantum computing with a single molecular ensemble and a Cooper-pair box. Phys. Rev. A 77, 020301 (2008)

    Article  ADS  Google Scholar 

  4. Jaksch D.: Optical lattices, ultracold atoms and quantum information processing. Contemp. Phys. 45, 367 (2004)

    Article  ADS  Google Scholar 

  5. Treutlein P., Steinmetz T., Colombe Y., Lev B., Hommelhoff P., Reichel J., Greiner M., Mandel O., Widera A., Rom T., Bloch I., Hänsch T.W.: Quantum information processing in optical lattices and magnetic microtraps. Fortschr. Phys. 54, 702 (2006)

    Article  Google Scholar 

  6. Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000)

    Article  ADS  Google Scholar 

  7. Calarco T., Briegel H.-J., Jaksch D., Cirac J.I., Zoller P.: Quantum computing with trapped particles in microscopic potentials. Fortschr. Phys. 48, 945 (2000)

    Article  Google Scholar 

  8. Calarco T., Dorner U., Julienne P.S., Williams C.J., Zoller P.: Quantum computations with atoms in optical lattices: marker qubits and molecular interactions. Phys. Rev. A 70, 012306 (2004)

    Article  ADS  Google Scholar 

  9. DeMille D.: Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002)

    Article  ADS  Google Scholar 

  10. Yelin S.F., Kirby K., Côté R.: Schemes for robust quantum computation with polar molecules. Phys. Rev. A 74, 050301(R) (2006)

    Article  ADS  Google Scholar 

  11. Kuznetsova E., Côté R., Kirby K., Yelin S.F.: Analysis of experimental feasibility of polar-molecule-based phase gates. Phys. Rev. A 78, 012313 (2008)

    Article  ADS  Google Scholar 

  12. Carr L.D., DeMille D., Krems R.V., Ye J.: Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009)

    Article  ADS  Google Scholar 

  13. Lysebo M., Veseth L.: Diatomic molecules in optical and microwave dipole traps. Phys. Rev. A 83, 033407 (2011)

    Article  ADS  Google Scholar 

  14. Kuznetsova E., Gacesa M., Yelin S.F., Côté R.: Phase gate and readout with an atom-molecule hybrid platform. Phys. Rev. A 81, 030301(R) (2010)

    Article  ADS  Google Scholar 

  15. Volz T., Syassen N., Bauer D.M., Hansis E., Durr S., Rempe G.: Preparation of a quantum state with one molecule at each site of an optical lattice. Nat. Phys. 2, 692 (2006)

    Article  Google Scholar 

  16. Ospelkaus C., Ospelkaus S., Humbert L., Ernst P., Sengstock K., Bongs K.: Ultracold heteronuclear molecules in a 3D optical lattice. Phys. Rev. Lett. 97, 120402 (2006)

    Article  ADS  Google Scholar 

  17. Andre A., DeMille D., Doyle J.M., Lukin M.D., Maxwell S.E., Rabl P., Schoelkopf R.J., Zoller P.: A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys. 2, 636 (2006)

    Article  Google Scholar 

  18. Jones K.M., Tiesinga E., Lett P.D., Julienne P.S.: Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483 (2006)

    Article  ADS  Google Scholar 

  19. Köhler T., Góral K., Julienne P.S.: Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006)

    Article  ADS  Google Scholar 

  20. Ni K.-K., Ospelkaus S., de Miranda M.H.G., Pe’er A., Neyenhuis B., Zirbel J.J., Kotochigova S., Julienne P.S., Jin D.S., Ye J.: A high phase-space-density gas of polar molecules. Science 322, 231 (2008)

    Article  ADS  Google Scholar 

  21. Marzok C., Deh B., Courteille P.W., Zimmermann C.: Ultracold thermalization of Li-7 and Rb-87. Phys. Rev. A 76, 052704 (2007)

    Article  ADS  Google Scholar 

  22. Freericks J.K., Maska M.M., Hu A., Hanna T.M., Williams C.J., Julienne P.S., Lemanski R.: Improving the efficiency of ultracold dipolar molecule formation by first loading onto an optical lattice. Phys. Rev. A 81, 011605 (2010)

    Article  ADS  Google Scholar 

  23. Marzok C., Deh B., Zimmermann C., Courteille P.W., Tiemann E., Vanne Y.V., Saenz A.: Feshbach resonances in an ultracold Li-7 and Rb-87 mixture. Phys. Rev. A 79, 012717 (2009)

    Article  ADS  Google Scholar 

  24. Marte A., Volz T., Shuster J., Durr S., Rempe G., van Kempen E.G.M., Verhaar B.J.: Feshbach resonances in rubidium 87: precision measurement and analysis. Phys. Rev. Lett. 89, 283202 (2002)

    Article  ADS  Google Scholar 

  25. Silber C., Gunther S., Marzok C., Deh B., Courteille P.W., Zimmermann C.: Quantum-degenerate mixture of fermionic lithium and bosonic rubidium gases. Phys. Rev. Lett. 95, 170408 (2005)

    Article  ADS  Google Scholar 

  26. Pellegrini P., Gacesa M., Côté R.: Giant formation rates of ultracold molecules via Feshbach-optimized photoassociation. Phys. Rev. Lett. 101, 053201 (2008)

    Article  ADS  Google Scholar 

  27. Kuznetsova E., Gacesa M., Pellegrini P., Yelin S.F., Côté R.: Efficient formation of ground-state ultracold molecules via STIRAP from the continuum at a Feshbach resonance. New J. Phys. 11, 055028 (2009)

    Article  ADS  Google Scholar 

  28. Aldegunde J., Rivington B.A., Zuchowski P.S., Hutson J.M.: Hyperfine energy levels of alkali-metal dimers: ground-state polar molecules in electric and magnetic fields. Phys. Rev. A 78, 033434 (2008)

    Article  ADS  Google Scholar 

  29. Aldegunde J., Hutson J.M.: Hyperfine energy levels of alkali-metal dimers: ground-state homonuclear molecules in magnetic fields. Phys. Rev. A 79, 013401 (2009)

    Article  ADS  Google Scholar 

  30. Daley A.J., Boyd M.M., Ye J., Zoller P.: Quantum Computing with alkaline-earth-metal atoms. Phys. Rev. Lett. 101, 170504 (2008)

    Article  ADS  Google Scholar 

  31. Gorshkov A.V., Rey A.M., Daley A.J., Boyd M.M., Ye J., Zoller P., Lukin M.D.: Alkaline-earth-metal atoms as few-qubit quantum registers. Phys. Rev. Lett. 102, 110503 (2009)

    Article  ADS  Google Scholar 

  32. Safronova M.S., Arora B., Clark C.W.: Frequency-dependent polarizabilities of alkali-metal atoms from ultraviolet through infrared spectral regions. Phys. Rev. A 73, 022505 (2006)

    Article  ADS  Google Scholar 

  33. Kotochigova S., Tiesinga E.: Controlling polar molecules in optical lattices. Phys. Rev. A 73, 041405 (2006)

    Article  ADS  Google Scholar 

  34. Korek M., Allouche A.R., Kobeissi M., Chaalan A., Dagher M., Fakherddin K., Aubert-Frecon M.: Theoretical study of the electronic structure of the LiRb and NaRb molecules. Chem. Phys. 256, 1 (2000)

    Article  Google Scholar 

  35. Deuretzbacher F., Plassmeier K., Pfannkuche D., Werner F., Ospelkaus C., Ospelkaus S., Sengstock K., Bongs K.: Heteronuclear molecules in an optical lattice: theory and experiment. Phys. Rev. A 77, 032726 (2008)

    Article  ADS  Google Scholar 

  36. Bertelsen J.F., Molmer K.: Association of heteronuclear molecules in a harmonic oscillator well. Phys. Rev. A 76, 043615 (2007)

    Article  ADS  Google Scholar 

  37. Ye J.: Ultracold polar molecules near quantum degeneracy. Faraday Discuss. 142, 319 (2009)

    Article  Google Scholar 

  38. Aymar M., Dulieu O.: Calculation of accurate permanent dipole moments of the lowest (1,3) Sigma (+) states of heteronuclear alkali dimers using extended basis sets. J. Chem. Phys. 122, 204302 (2005)

    Article  ADS  Google Scholar 

  39. Saffman M., Walker T.G.: Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A 72, 022347 (2005)

    Article  ADS  Google Scholar 

  40. Aliferis P., Preskill J.: Fibonacci scheme for fault-tolerant quantum computation. Phys. Rev. A 79, 012332 (2009)

    Article  ADS  Google Scholar 

  41. Knill E.: Quantum computing with realistically noisy devices. Nature 434, 39 (2005)

    Article  ADS  Google Scholar 

  42. Weitenberg C., Endres M., Sherson J.F., Cheneau M., Schaub P., Fukuhara T., Bloch I., Kuhr S.: Single-spin addressing in an atomic Mott insulator. Nature 471, 319 (2011)

    Article  ADS  Google Scholar 

  43. Li Z., Singh S., Tscherbul T.V., Madison K.W.: Feshbach resonances in ultracold Rb-85-Rb-87 and Li-6-Rb-87 mixtures. Phys. Rev. A 78, 022710 (2008)

    Article  ADS  Google Scholar 

  44. Zanardi P., Rasetti M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  45. Lidar D.A., Chuang I.L., Whaley K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  46. Soderberg K.A.B., Gemelke N., Chin C.: Ultracold molecules: vehicles to scalable quantum information processing. New J. Phys. 11, 055022 (2009)

    Article  Google Scholar 

  47. Brion E., Pedersen L.H., Molmer K., Chutia S., Saffmann M.: Universal quantum computation in a neutral-atom decoherence-free subspace. Phys. Rev. A 75, 032328 (2007)

    Article  ADS  Google Scholar 

  48. Sebby-Strabley J., Anderlini M., Jessen P.S., Porto J.V.: Lattice of double wells for manipulating pairs of cold atoms. Phys. Rev. A 73, 033605 (2006)

    Article  ADS  Google Scholar 

  49. Lee P.J., Anderlini M., Brown B.L., Sebby-Strabley J., Phillips W.D., Porto J.V.: Sublattice addressing and spin-dependent motion of atoms in a double-well lattice. Phys. Rev. Lett. 99, 020402 (2007)

    Article  ADS  Google Scholar 

  50. Lundblad M., Obrecht J.M., Spielman I.B., Porto J.V.: Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nat. Phys. 5, 575 (2009)

    Article  Google Scholar 

  51. Urban E., Johnson T.A., Henage T., Isenhower L., Yavuz D.D., Walker T.G., Saffman M.: Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)

    Article  Google Scholar 

  52. Gaetan A., Miroshnychenko Y., Wilk T., Chotia A., Viteau M., Comparat D., Pillet P., Browaeys A., Grangier P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)

    Article  Google Scholar 

  53. Capogrosso-Sansone, B.: Solid phases and pairing in a mixture of polar molecules and atoms, arxiv:1009.6213 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Côté.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, E., Yelin, S.F. & Côté, R. An atom–molecule platform for quantum computing. Quantum Inf Process 10, 821 (2011). https://doi.org/10.1007/s11128-011-0308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-011-0308-0

Keywords

Navigation