Skip to main content
Log in

A nearest neighbor architecture to overcome dephasing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We design a nearest-neighbor architectural layout that uses fixed positive and negative couplings between qubits, to overcome the effects of relative phases due to qubit precessions, both during idle times and gate operations. The scheme uses decoherence-free subspaces, and we show how to realize gate operations on these encoded qubits. The main advantage of our scheme is that most gate operations are realized by only varying a single control parameter, which greatly reduces the circuit complexity. Moreover, the scheme is robust against phase errors occurring as a result of finite rise and fall times due to non-ideal pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LNN:

Linear nearest neighbor

DFS:

Decoherence free subspace

DD:

Dynamical decoupling

CNOT:

Controlled-NOT

References

  1. Nielson M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  2. Makhlin Y., Schon G., Shnirman A.: Josephson-junction qubits with controlled couplings. Nature 398, 305–309 (1999)

    Article  ADS  Google Scholar 

  3. Cirac J.J., Zoller P.: A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

    Article  ADS  Google Scholar 

  4. Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  5. Duan L.-M., Guo G.-C.: Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953–1956 (1997)

    Article  ADS  Google Scholar 

  6. Zanardi P., Rasetti M.: Error avoiding quantum codes. Mod. Phys. Lett. B 11, 1085–1093 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  7. Lidar, D.A., Whaley, K.B.: Decoherence-free subspaces and subsystems. ArXiv:quant-ph/0301032 (2003)

  8. Viola L., Lloyd S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  9. Vitali D., Tombesi P.: Using parity kicks for decoherence control. Phys. Rev. A 59, 4178–4186 (1999)

    Article  ADS  Google Scholar 

  10. Hahn E.L.: Spin echoes. Phys. Rev. 80, 580–594 (1950)

    Article  ADS  MATH  Google Scholar 

  11. Viola L., Knill E., Lloyd S.: Dynamical decoupling of open quantum system. Phys. Rev. Lett. 82, 2417–2421 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Facchi P., Lidar D.A., Pascazio P.: Unification of dynamical decoupling and the quantum zeno effect. Phys. Rev. A 69, 032314–032317 (2004)

    Article  ADS  Google Scholar 

  13. Viola L., Knill E.: Robust dynamical decoupling of quantum systems with bounded controls. Phys. Rev. Lett. 90, 037901–037904 (2003)

    Article  ADS  Google Scholar 

  14. Viola L., Knill E.: Random decoupling schemes for quantum dynamical control and error suppression. Phys. Rev. Lett. 94, 060502–060505 (2005)

    Article  ADS  Google Scholar 

  15. Biercuk M.J., Uys H., VanDevender A.P., Shiga N., Itano W.M., Bollinger J.J.: Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009)

    Article  ADS  Google Scholar 

  16. Beavan S.E., Fraval E., Sellars M.J.: Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamical decoupling techniques. Phys. Rev. A 80, 032308–032316 (2009)

    Article  ADS  Google Scholar 

  17. Damodarakurup S., Lucamarini M., Di Giuseppe G., Vitali D., Tombesi P.: Optimized noise filtration through dynamical decoupling. Phys. Rev. Lett. 103, 040501–040504 (2009)

    Article  Google Scholar 

  18. Sagi Y., Almog I., Davidson N.: Process tomography of dynamic decoupling in a dense cold atomic ensemble. Phys. Rev. Lett. 105, 053201–053204 (2010)

    Article  ADS  Google Scholar 

  19. Petta J.R., Johnson A.C., Taylor J.M., Laird E.A., Yacoby A., Lukin M.D., Marcus C.M., Hansen M.P., Gossard A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    Article  ADS  Google Scholar 

  20. Harris R., Berkley A.J., Johnson M.W., Bunyk P., Govorkov S., Thom M.C., Uchaikin S., Wilson A.B., Chung J., Holtham E., Biamonte J.D., Smirnov A.Yu., Amin M.H.S., van den Brink A.M.: Sign- and magnitude-tunable coupler for superconducting flux qubits. Phys. Rev. Lett. 98, 177001–177004 (2007)

    Article  ADS  Google Scholar 

  21. Groszkowski P., Fowler A.G., Motzoi f., Wilhelm F.K.: Tunable coupling between three qubits as a building block for a superconducting quantum computer. Phys. Rev. B 84, 144516–144522 (2011)

    Article  ADS  Google Scholar 

  22. Zhou X., Zhou Z., Guo G., Feldman M.J.: Quantum computing with un-tunable couplings. Phys. Rev. Lett. 89, 197903–197906 (2002)

    Article  ADS  Google Scholar 

  23. Benjamin S.C., Bose S.: Quantum computing with an ‘always-on’ Heisenberg interaction. Phys. Rev. Lett. 90, 247901–247904 (2003)

    Article  ADS  Google Scholar 

  24. Fowler A.G., Thompson W.F., Yan Z.: Long-range coupling and scalable architecture for superconducting flux qubits. Phys. Rev. B 76, 174507–174513 (2007)

    Article  ADS  Google Scholar 

  25. Zhang J., Whaley K.B.: Generation of quantum logic operations from physical Hamiltonians. Phys. Rev. A 71, 052317–052329 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  26. Berman G.P., Doolen G.D., Holm G.D., Tsifrinovich V.I.: Quantum computing on a class of one-dimensional Ising systems. Phys. Lett. A 193, 444–450 (1999)

    Article  ADS  Google Scholar 

  27. Burkard G., Loss D., DiVincenzo D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999)

    Article  ADS  Google Scholar 

  28. Yamamoto T., Pashkin Y.A., Astafiev O., Nakamura Y., Tsai J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941–944 (2003)

    Article  ADS  Google Scholar 

  29. Lantz, J., Wallquist, M., Shumeiko, V.S., Wendin, G.: Josephson junction qubit network with current-controlled interaction. Phys. Rev. B 70, 140507–140510 (R) (2004)

    Google Scholar 

  30. Kumar P., Skinner S.R.: Universal quantum computing in linear nearest neighbor architectures. Quantum Inf. Comput. 11, 0300–0312 (2011)

    MathSciNet  Google Scholar 

  31. Fedorov A., Macha P., Feofanov A.K., Harmans C.J.P.M., Mooij J.E.: Tuned transition from quantum to classical for macroscopic quantum states. Phys. Rev. Lett. 106, 170404–170407 (2011)

    Article  ADS  Google Scholar 

  32. Orlando T.P., Mooij J.E., Tian L., van der Wal C., Levitov L.S., Lloyd S., Mazo J.J.: Superconducting persistent-current qubit. Phys. Rev. B 60, 15398–15413 (1999)

    Article  ADS  Google Scholar 

  33. Ferber J., Wilhelm M.: Efficient creation of multi-partite entanglement in flux qubits. Nanotechnology 21, 274015 (2010)

    Article  ADS  Google Scholar 

  34. Serban I., Solano E., Wilhelm F.K.: Phase-theory for dispersive detectors of superconducting qubits. Phys. Rev. B 76, 104510–104516 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preethika Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Skinner, S.R. & Daraeizadeh, S. A nearest neighbor architecture to overcome dephasing. Quantum Inf Process 12, 157–188 (2013). https://doi.org/10.1007/s11128-012-0365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0365-z

Keywords

Navigation