Skip to main content
Log in

Classification of the entangled states 2 × M × N

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We extend the matrix decomposition method (MDM) in classifying the 2 × N × N truly entangled states to 2 × M × N system under the condition of stochastic local operations and classical communication. It is found that the MDM is quite practical and convenient in operation for the asymmetrical tripartite states, and an explicit example of the classification of 2 × 6 × 7 quantum system is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bell J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  3. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett C.H., Bessette F., Grassard G., Salvail L., Smolin J.: Experimental quantum cryptography. J. Cryptol. 5, 3 (1992)

    Article  MATH  Google Scholar 

  5. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Mattle K., Weinfurter H., Kwiat P.G., Zeilinger A.: Dense Coding in Experimental Quantum Communication. Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  7. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  10. Chen L., Chen Y.-X., Mei Y.-X.: Classification of multipartite entanglement containing infinitely many kinds of states. Phys. Rev. A 74, 052331 (2006)

    Article  ADS  Google Scholar 

  11. Cheng S., Li J., Qiao C.-F.: Classification of the entangled states of 2 × N × N. J. Phys. A 43, 055303 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. Chen L., Chen Y.-X.: Range criterion and classification of true entanglement in a 2 × M × N system. Phys. Rev. A 73, 052310 (2006)

    Article  ADS  Google Scholar 

  13. Cornelio M.F., de Toledo Piza A.F.R.: Classification of tripartite entanglement with one qubit. Phys. Rev. A 73, 032314 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  14. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University, Cambridge (1985)

    MATH  Google Scholar 

  15. Cheng, S., Li, J., Qiao, C.-F.: Classification of the entangled state of 2 × 5 × 5 pure systems. J. Grad. Sch. Chin. Acad. Sci. 3, 303 (2009) (in chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Feng Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JL., Qiao, CF. Classification of the entangled states 2 × M × N . Quantum Inf Process 12, 251–268 (2013). https://doi.org/10.1007/s11128-012-0370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0370-2

Keywords