Skip to main content
Log in

Dynamic quantum secret sharing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on the entanglement swapping of EPR pairs, a dynamic quantum secret sharing (QSS) scheme is proposed. The scheme has the following dynamic properties. Without modifying the secret shares of old agents, (1) an agent can join or leave the QSS; (2) two QSSs (m parties in the first QSS and n parties in the second QSS) can be integrated into an (m + n)-party QSS. Compared with the existing QSS schemes, the proposed dynamic QSS is more flexible in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hillery M., Bužek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  2. Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  3. Xiao L., Long G.L., Deng F.G., Pan J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  4. Deng F.G., Zhou P., Li X.H., Li C.Y., Zhou H.Y.: Efficient multiparty quantum secret sharing with Greenberger–Horne–Zeilinger states. Chin. Phys. Lett. 23(5), 1084–1087 (2006)

    Article  ADS  Google Scholar 

  5. Li C.Y., Zhou H.Y., Wang Y., Deng F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    Article  ADS  Google Scholar 

  6. Deng F.G., Li X.H., Zhou H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372(12), 1957–1962 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Liu X.S., Long G.L., Tong D.M., Li F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)

    Article  ADS  Google Scholar 

  8. Gu B., Li C.Q., Xu F., Chen Y.L.: High-capacity three-party quantum secret sharing with superdense coding. Chin. Phys. B 18(11), 4690–4694 (2009)

    Article  ADS  Google Scholar 

  9. Gu B., Mu L.L., Ding L.G., Zhang C.Y., Li C.Q.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283(15), 3099–3103 (2010)

    Article  ADS  Google Scholar 

  10. Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang Y.G., Wen Q.Y.: Threshold quantum secret sharing between multi-party and multi-party. Sci. China Ser. G Phys. Mech. Astron. 51(9), 1308–1315 (2008)

    Article  ADS  MATH  Google Scholar 

  12. Li B.K., Yang Y.G., Wen Q.Y.: Threshold quantum secret sharing of secure direct communication. Chin. Phys. Lett. 26(1), 010302 (2009)

    Article  ADS  Google Scholar 

  13. Yang, Y.G., Wang, Y., Chai, H.P., Teng, Y.W., Zhang, H.: Member expansion in quantum (t,n) threshold secret sharing schemes. Opt. Commun. (2011). doi:10.1016/j.optcom.2011.03.017

  14. Chen J.H., Lee K.C., Hwang T.: The enhancement of Zhou et al.’s quantum secret sharing protocol. Int. J. Mod. Phys. C 20(10), 1531–1535 (2009)

    Article  ADS  MATH  Google Scholar 

  15. Deng F.G., Li X.H., Zhou H.Y., Zhang Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  16. Shi R.H., Huang L.S., Yang W., Zhong H.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(11), 2476–2480 (2010)

    Article  ADS  Google Scholar 

  17. Zhang Z.J., Man Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 0223031 (2005)

    MathSciNet  Google Scholar 

  18. Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. (2011). doi:10.1016/j.optcom.2011.03.039

  19. Deng F.G., Long G.L., Zhou H.Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)

    Article  ADS  MATH  Google Scholar 

  20. Wang S.H., Chong S.K., Hwang T.: On “multiparty quantum secret sharing with Bell states and Bell measurements”. Opt. Commun. 283(21), 4405–4407 (2010)

    Article  ADS  Google Scholar 

  21. Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  ADS  Google Scholar 

  22. Zukowski M., Zeilinger A., Horne M.A., Ekert A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  23. Pan J.W., Bouwmeester D., Weinfurter H., Zeilinger A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Scherer A., Howard R.B., Sanders B.C., Tittel W.: Quantum states prepared by realistic entanglement swapping. Phys. Rev. A 80(6), 062310 (2009)

    Article  ADS  Google Scholar 

  25. Briegel H.J., Dur W., Cirac J.I., Zoller P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932–5935 (1998)

    Article  ADS  Google Scholar 

  26. Zhao B., Chen Z.B., Chen Y.A., Schmiedmayer J., Pan J.W.: Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98(24), 240502 (2007)

    Article  ADS  Google Scholar 

  27. Duan L.M., Lukin M.D., Cirac J.I., Zoller P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  28. Yuan Z.S., Chen Y.A., Zhao B., Chen S., Schmiedmayer J., Pan J.W.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)

    Article  ADS  Google Scholar 

  29. Hwang, T., Tsai, C.W., Chong, S.K.: Probabilistic quantum key distribution. Quantum Inf. Comput. Accepted 11 April 2011

  30. Yen C.A., Horng S.J., Goan H.S., Kao T.W., Chou Y.H.: Quantum direct communication with mutual authentication. Quantum Inf. Comput. 9(5&6), 0376–0394 (2009)

    MathSciNet  Google Scholar 

  31. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing (invited paper). In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179, December 1984

  32. Li C.Y., Li X.H., Deng F.G., Zhou P., Liang Y.J., Zhou H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)

    Article  ADS  Google Scholar 

  33. Hwang T., Li C.M.: Secure direct communication using deterministic BB84 protocol. Int. J. Mod. Phys. C 19(4), 625–635 (2008)

    Article  ADS  MATH  Google Scholar 

  34. Gao G.: Quantum key distribution by comparing Bell states. Opt. Commun. 281(4), 876–879 (2008)

    Article  ADS  Google Scholar 

  35. Gao G.: Quantum key distribution scheme with high efficiency. Commun. Theor. Phys. 51(5), 820–822 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Yuan H., Song J., Han L.F., Hou K., Shi S.H.: Improving the total efficiency of quantum key distribution by comparing Bell states. Opt. Commun. 281(18), 4803–4806 (2008)

    Article  ADS  Google Scholar 

  37. Gao G.: Eavesdropping on the improved three-party quantum secret sharing protocol. Opt. Commun. 284(3), 902–904 (2011)

    Article  ADS  Google Scholar 

  38. Chong S.K., Hwang T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)

    Article  ADS  Google Scholar 

  39. Chong S.K., Hwang T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  40. Wang J., Zhang Q., Liang L.M., Tang C.J.: Comment on: “arbitrated quantum signature scheme with message recovery”. Phys. Lett. A 347, 262–263 (2005)

    Article  ADS  Google Scholar 

  41. Jennewein T., Simon C., Weihs G., Weinfurter H., Zeilinger A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729–4732 (2000)

    Article  ADS  Google Scholar 

  42. Gobby C., Yuan Z.L., Shields A.J.: Quantum key distribution over 122 km standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)

    Article  ADS  Google Scholar 

  43. Hughes R.J., Nordholt J.E., Derkacs D., Peterson C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43.1–43.14 (2002)

    Article  Google Scholar 

  44. Stucki D., Gisin N., Guinnard O., Ribordy G., Zbinden H.: Quantum key distribution over 67 km with a plug&play system. N. J. Phys. 4, 41.1–41.8 (2002)

    Article  Google Scholar 

  45. Beveratos, A., Brouri, R., Gacoin, T., Villing, A., Poizat, J.-P., Grangier, P.: Single photon quantum cryptography. Phys. Rev. Lett. (2002)

  46. Lo H.K., Chau H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)

    Article  ADS  Google Scholar 

  47. Wasilewski W., Banaszek K.: Protecting an optical qubit against photon loss. Phys. Rev. A 75, 042316 (2007)

    Article  ADS  Google Scholar 

  48. Deng, F.-G., Li, X.-H., Li, C.-Y., Zhou, P., Zhou, H.-Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005) (online). Available: http://link.aps.org/doi/10.1103/PhysRevA.72.044301

  49. Deng F., Li X., Li C., Zhou P., Zhou H.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and bell-state measurements. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 39(3), 459–464 (2006)

    MathSciNet  Google Scholar 

  50. Wang T., Zhou H., Deng F.: Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized bell-state measurements. Phys. A Stat. Mech. Appl. 387(18), 4716–4722 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, JL., Chong, SK., Hwang, T. et al. Dynamic quantum secret sharing. Quantum Inf Process 12, 331–344 (2013). https://doi.org/10.1007/s11128-012-0380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0380-0

Keywords

Navigation