Skip to main content
Log in

Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A novel proposal for the robust generation of atomic entanglement in two coupled cavities is proposed, for the first time via virtually excitation and quantum Zeno dynamics. Throughout the procedure, both cavity modes and atoms are only virtually excited, making the system robust against atomic and photonic decays. The influence of the atom-photon decay and the imperfection of the initial atom state on the prepared-state fidelity is also analyzed, which shows that the present scheme is feasible based on current technologies. At last, the proposal is generalized for the preparation of two atomic ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Hillery M., Bužek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  3. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  4. Raimond J.M., Brune M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Cirac J.I., Zoller P.: New Frontiers in quantum information with atoms and ions. Phys. Today 57, 38 (2004)

    Article  Google Scholar 

  6. Kimble H.J.: The quantum internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  7. Schneider C., Heindel T., Huggenberger A., Weinmann P., Kistner C., Kamp M., Reitzenstein S., Höfling S., Forchel A.: Single photon emission from a site-controlled quantum dot-micropillar cavity system. Appl. Phys. Lett. 94, 111111 (2009)

    Article  ADS  Google Scholar 

  8. Hartmann M.J., Brandão F.G.S.L., Plenio M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849 (2006)

    Article  Google Scholar 

  9. Hartmann M.J., Brandão F.G.S.L., Plenio M.B.: Laser Photon. Rev. 2, 527 (2008)

    Article  Google Scholar 

  10. Lin G.W., Zou X.B., Lin X.M., Guo G.C.: Scalable, high-speed one-way quantum computer in coupled-cavity arrays. Appl. Phys. Lett. 95, 224102 (2009)

    Article  ADS  Google Scholar 

  11. Zhang K., Li Z.Y.: Transfer behavior of quantum states between atoms in photonic crystal coupled cavities. Phys. Rev. A 81, 033843 (2010)

    Article  ADS  Google Scholar 

  12. Notomi M., Kuramochi E., Tanabe T.: Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat. Photon. 2, 741 (2008)

    Article  ADS  Google Scholar 

  13. Lamata L., García-Ripoll J.J., Cirac J.I.: How much entanglement can be generated between two atoms by detecting photons?. Phys. Rev. Lett. 98, 010502 (2007)

    Article  ADS  Google Scholar 

  14. Hammerer K., Sørensen A.S., Polzik E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010)

    Article  ADS  Google Scholar 

  15. Zheng S.B., Guo G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  16. Boradjiv I.I., Vitanov N.V.: Stimulated Raman adiabatic passage with unequal couplings: beyond two-photon resonance. Phys. Rev. A 81, 053415 (2010)

    Article  ADS  Google Scholar 

  17. Li Y.L., Fang M.F., Xiao X., Zeng K., Wu C.: Greenberger–Horne–Zeilinger state generation of three atoms trapped in two remote cavities. J. Phys. B: At. Mol. Opt. Phys. 43, 085501 (2010)

    Article  ADS  Google Scholar 

  18. von Neumann, J.: Die Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932) [English translation by Beyer, E.T.: Mathematical Foundation of Quantum Mechanics. Princeton University Press, Princeton (1955)]

  19. Misra B., Sudarshan E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  20. Itano W.M., Heinzen D.J., Bollinger J.J., Wineland D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295 (1990)

    Article  ADS  Google Scholar 

  21. Kwiat P., Weinfurter H., Herzog T., Zeilinger A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763 (1995)

    Article  ADS  Google Scholar 

  22. Streed E.W., Mun J., Boyd M., Gretchen K., Campbell G.K., Medley P., Ketterle W., Pritchard D.E.: Continuous and pulsed quantum Zeno effect. Phys. Rev. Lett. 97, 260402 (2006)

    Article  ADS  Google Scholar 

  23. Bernu J., Deléglise S., Sayrin C., Kuhr S., Dotsenko I., Brune M., Raimond J.M., Haroche S.: Freezing coherent field growth in a cavity by the quantum Zeno effect. Phys. Rev. Lett. 101, 180402 (2008)

    Article  ADS  Google Scholar 

  24. Wang X.B., You J.Q., Nori F.: Quantum entanglement via two-qubit quantum Zeno dynamics. Phys. Rev. A 77, 062339 (2008)

    Article  ADS  Google Scholar 

  25. Facchi P., Gorini V., Marmo G., Pascazio S., Sudarshan E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Facchi P., Pascazio S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  27. Franson J.D., Pittman T.B., Jacobs B.C.: Zeno logic gates using microcavities. J. Opt. Soc. Am. B 24, 209 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  28. Shao X.Q., Wang H.F., Chen L., Zhang S., Zhao Y.F., Yeon K.H.: Distributed CNOT gate via quantum Zeno dynamics. J. Opt. Soc. Am. B 26, 2440 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  29. Huang Y.P., Moore M.G.: Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits. Phys. Rev. A 77, 062332 (2008)

    Article  ADS  Google Scholar 

  30. Shao X.Q., Wang H.F., Chen L., Zhang S., Zhao Y.F., Yeon K.H.: Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics. New J. Phys. 12, 023040 (2010)

    Article  ADS  Google Scholar 

  31. Wang B., Han Y.X., Xiao J.T., Yang X.D., Zhang C.H., Wang H., Xiao M., Peng K.C.: Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms. Phys. Rev. A 75, 051801 (R) (2007)

    ADS  Google Scholar 

  32. Li S.J., Xu Z.X., Zheng H.Y., Zhao X.B., Wu Y.L., Wang H., Xie C.D., Peng K.C.: Coherent manipulation of spin-wave vector for polarization of photons in an atomic ensemble. Phys. Rev. A 84, 043430 (2009)

    Article  ADS  Google Scholar 

  33. Cho J., Angelakis D.G., Bose S.: Heralded generation of entanglement with coupled cavities. Phys. Rev. A 78, 022323 (2008)

    Article  ADS  Google Scholar 

  34. Zhang P.F., Li G., Zhang Y.C., Guo Y.Q., Wang J.M., Zhang T.C.: Light-induced atom desorption for cesium loading of a magneto-optical trap: analysis and experimental investigations. Phys. Rev. A 80, 053420 (2009)

    Article  ADS  Google Scholar 

  35. Facchil P., Pascazio S.: Quantum Zeno dynamics: mathematical and physical aspects. J. Phys. A Math. Theor. 41, 493001 (2008)

    Article  Google Scholar 

  36. Lvovsky A.I., Sanders B.C., Tittel W.: Optical quantum memory. Nat. Photon. 3, 706 (2009)

    Article  ADS  Google Scholar 

  37. Spillane S.M., Kippenberg T.J., Vahala K.J., Goh K.W., Wilcut E., Kimble H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)

    Article  ADS  Google Scholar 

  38. Armani D.K., Kippenberg T.J., Spillane S.M., Vahala K.J.: Ultra-high-Q toroid microcavity on a chip. Nature 421, 925 (2003)

    Article  ADS  Google Scholar 

  39. Nayak K.P., Hakuta K.: Single atoms on an optical nanofibre. New J. Phys. 10, 053003 (2008)

    Article  ADS  Google Scholar 

  40. Nayak K.P., Kien F.L., Morinaga M., Hakuta K.: Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber. Phys. Rev. A 79, 021801(R) (2009)

    ADS  Google Scholar 

  41. Alton D.J., Stern N.P., Aoki T., Lee H., Ostby E., Vahala K.J., Kimble H.J.: Strong interactions of single atoms and photons near a dielectric boundary. Nat. Phys. 7, 159 (2011)

    Article  Google Scholar 

  42. Zhang, P.F., Guo, Y.Q., Li, Z.H., Zhang, Y.C., Zhang, Y.F., Du, J.J., Li, G., Wang, J.M., Zhang, T.C.: Temperature determination of the cold atoms based on single atom countings, J. Opt. Soc. Am. B 28, 667 (2011)

    Google Scholar 

  43. Zhang, P.F., Guo, Y.Q., Li, Z.H., Zhang, Y.C., Zhang, Y.F., Du, J.J., Li, G., Wang, J.M., Zhang, T.C.: Elimination of degenerate trajectory of single atom strongly coupled to the tilted cavity TEM10 mode, Phys. Rev. A 83, 031804(R) (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Cai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, RC., Li, G. & Zhang, TC. Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics. Quantum Inf Process 12, 493–504 (2013). https://doi.org/10.1007/s11128-012-0393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0393-8

Keywords

Navigation